- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- + 函数的应用
- 函数与方程
- 函数模型及其应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某辆汽车以
公里/小时速度在高速公路上匀速行驶(考虑到高速公路行车安全要求
)时,每小时的油耗(所需要的汽油量)为
升.
(1)欲使每小时的油耗不超过
升,求
的取值范围;
(2)求该汽车行驶
公里的油耗
关于汽车行驶速度
的函数,并求
的最小值.



(1)欲使每小时的油耗不超过


(2)求该汽车行驶




如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱,污水从
孔流入,经沉淀后从
孔流出,设箱体的长度为
米,高度为
米,已知流出的水中该杂质的质量分数与
的乘积
成反比,现有制箱材料60平方米;

(1)写出
关于
的表达式;
(2)当
各为多少米时,经沉淀后流出的水中该杂质质量分数最小;(
孔的面积忽略不计)







(1)写出


(2)当


已知函数
,
.
(1)求函数
的零点;
(2)若直线
:
(
,
,
为常数)与
的图像交于不同的两点
、
,与
的图像交于不同的两点
、
,求证:
;
(3)求函数
的最小值.


(1)求函数

(2)若直线












(3)求函数

已知函数
,
,(
为实数).
(1)若对任意实数
,都有
成立,求实数
的值;
(2)者对任意实数
,都有
成立,求实数
的值;
(3)已知
且
,求证:关于
的方程
在区间
上有实数解.



(1)若对任意实数



(2)者对任意实数



(3)已知





函数
,关于
的不等式
的解集为
.
(Ⅰ)求
、
的值;
(Ⅱ)设
.
(i)若不等式
在
上恒成立,求实数
的取值范围;
(ii)若函数
有三个不同的零点,求实数
的取值范围(
为自然对数的底数).




(Ⅰ)求


(Ⅱ)设

(i)若不等式



(ii)若函数



水培植物需要一种植物专用营养液,已知每投放
且
个单位的营养液,它在水中释放的浓度
(克/升)随着时间
(天)变化的函数关系式近似为
,其中
,若多次投放,则某一时刻水中的营养液浓度为每次投放的营养液在相应时刻所释放的浓度之和,根据经验,当水中营养液的浓度不低于4(克/升)时,它才能有效.
(1)若只投放一次2个单位的营养液,则有效时间最多可能持续几天?
(2)若先投放2个单位的营养液,4天后再投放b个单位的营养液,要使接下来的2天中,营养液能够持续有效,试求
的最小值.






(1)若只投放一次2个单位的营养液,则有效时间最多可能持续几天?
(2)若先投放2个单位的营养液,4天后再投放b个单位的营养液,要使接下来的2天中,营养液能够持续有效,试求
