- 集合与常用逻辑用语
- 函数与导数
- 二次函数的图象分析与判断
- 判断二次函数的单调性和求解单调区间
- + 与二次函数相关的复合函数问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
为奇函数.
(1)求
的值,并求
的定义域;
(2)判断函数
的单调性,不需要证明;
(3)若对于任意
,是否存在实数
,使得不等式
恒成立?若存在,求出实数
的取值范围;若不存在,请说明理由.

(1)求


(2)判断函数

(3)若对于任意




已知函数
(1)求证:
(2)若函数
的图象与直线
没有交点,求实数
的取值范围;
(3)若函数
,则是否存在实数
,使得
的最小值为
?若存在,求出
的值;若不存在,请说明理由.

(1)求证:

(2)若函数



(3)若函数





设函数
的定义域为
,若满足:①
在
内是单调增函数;②存在
,使得
在
上的值域为
,那么就称
是定义域为
的“成功函数”.若函数
(
且
)是定义域为
的“成功函数”,则
的取值范围是( )















A.![]() | B.![]() | C.![]() | D.![]() |