- 集合与常用逻辑用语
- 函数与导数
- 二次函数的图象分析与判断
- 判断二次函数的单调性和求解单调区间
- + 与二次函数相关的复合函数问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设
,函数
.
(1)若
,求函数
在区间
上的最大值;
(2)若
,写出函数
的单调区间(写出必要的过程,不必证明);
(3)若存在
,使得关于
的方程
有三个不相等的实数解,求实数
的取值范围.


(1)若



(2)若


(3)若存在




已知
是定义在
上的函数,记
,
的最大值为
.若存在
,满足
,
,
,则称一次函数
是
的“逼近函数”,此时的
称为
在
上的“逼近确界”.
(1)验证
是
,
的“逼近函数”;
(2)已知
,
,
.若
是
的“逼近函数”,求
,
的值.














(1)验证



(2)已知







已知函数
,
,且函数
是偶函数.
(1)求
的解析式;.
(2)若不等式
在
上恒成立,求n的取值范围;
(3)若函数
恰好有三个零点,求k的值及该函数的零点.



(1)求

(2)若不等式


(3)若函数
