- 集合与常用逻辑用语
- 函数与导数
- 二次函数的图象分析与判断
- 判断二次函数的单调性和求解单调区间
- + 与二次函数相关的复合函数问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设常数
,函数
.
(1) 若
,求
的单调递减区间;
(2) 若
为奇函数,且关于
的不等式
对所有的
恒成立,求实数
的取值范围;
(3) 当
时,若方程
有三个不相等的实数根
、
、
,且
,求实数
的值.


(1) 若


(2) 若





(3) 当







抛物线y=ax2+c与x轴交于A、B两点,顶点为C,点P在抛物线上,且位于x轴下方.
(1)如下图,若P(1,-3)、B(4,0),① 求该抛物线的解析式;② 若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;

(2) 如下图,在图中的抛物线解析式不变的条件下,已知直线PA、PB与y轴分别交于E、F两点.当点P运动时,OE+OF是否为定值?若是,试求出该定值;若不是,请说明理由.
(1)如下图,若P(1,-3)、B(4,0),① 求该抛物线的解析式;② 若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;

(2) 如下图,在图中的抛物线解析式不变的条件下,已知直线PA、PB与y轴分别交于E、F两点.当点P运动时,OE+OF是否为定值?若是,试求出该定值;若不是,请说明理由.

已知函数f(x)是二次函数,不等式f(x)≥0的解集为{x|﹣2≤x≤3},且f(x)在区间[﹣1,1]上的最小值是4.
(1)求f(x)的解析式;
(2)设g(x)=x+5﹣f(x),若对任意的
,
均成立,求实数m的取值范围.
(1)求f(x)的解析式;
(2)设g(x)=x+5﹣f(x),若对任意的


已知二次函数f(x)的图象过点(0,4),对任意x满足f(3﹣x)=f(x),且f(1)=2.
(1)若f(x)在(a,2a﹣1)上单调递减,求实数a的取值范围.
(2)设函数h(x)=f(x)﹣(2t﹣3)x,其中t∈R,求h(x)在区间[0,1]上的最小值g (t).
(1)若f(x)在(a,2a﹣1)上单调递减,求实数a的取值范围.
(2)设函数h(x)=f(x)﹣(2t﹣3)x,其中t∈R,求h(x)在区间[0,1]上的最小值g (t).