- 集合与常用逻辑用语
- 函数与导数
- 二次函数的图象分析与判断
- + 判断二次函数的单调性和求解单调区间
- 与二次函数相关的复合函数问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
是二次函数,该函数图像开口向上,与
轴交点为:(0,0),(4,0),且
在
上的最小值为-8.
(1)求
的解析式;
(2)若
在区间
上单调,求实数
的取值范围.




(1)求

(2)若



设函数f(x)=tx2+2t2x+t-1(x∈R,t>0).
(1)求f(x)的最小值h(t);
(2)若h(t)<-2t+m对t∈(0,2)恒成立,求实数m的取值范围.
(1)求f(x)的最小值h(t);
(2)若h(t)<-2t+m对t∈(0,2)恒成立,求实数m的取值范围.
已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=2,f(x+1)﹣f(x)=2x﹣1
(1)求函数f(x)的解析式;
(2)当x∈[﹣1,2]时,求函数的最大值和最小值.
(3)若函数g(x)=f(x)﹣mx的两个零点分别在区间(﹣1,2)和(2,4)内,求m的取值范围.
(1)求函数f(x)的解析式;
(2)当x∈[﹣1,2]时,求函数的最大值和最小值.
(3)若函数g(x)=f(x)﹣mx的两个零点分别在区间(﹣1,2)和(2,4)内,求m的取值范围.