- 集合与常用逻辑用语
- 函数与导数
- 二次函数的概念
- + 二次函数的性质与图象
- 二次函数的图象分析与判断
- 判断二次函数的单调性和求解单调区间
- 与二次函数相关的复合函数问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
.
(1)将函数
写成分段函数的形式,并画出函数
的大致图像;
(2)求证:函数
在
上是增函数;
(3)若关于
的方程
在区间
上有两个不相等的实数根,求实数
的取值范围.

(1)将函数


(2)求证:函数


(3)若关于





已知集合A={t | t2 – 4 ≤ 0},对于满足集合A的所有实数t, 则使不等式x2 +tx- t>2x-1恒成立的x的取值范围是( ).
A.![]() |
B.![]() |
C.![]() |
D.![]() |
近年来,随着我市经济的快速发展,政府对民生也越来越关注. 市区现有一块近似正三角形土地ABC(如图所示),其边长为2百米,为了满足市民的休闲需求,市政府拟在三个顶点处分别修建扇形广场,即扇形DBE,DAG和ECF,其中
、
与
分别相切于点D、E,且
与
无重叠,剩余部分(阴影部分)种植草坪. 设BD长为x(单位:百米),草坪面积为S(单位:百米2).
(1)试用x分别表示扇形DAG和DBE的面积,并写出x的取值范围;
(2)当x为何值时,草坪面积最大?并求出最大面积.





(1)试用x分别表示扇形DAG和DBE的面积,并写出x的取值范围;
(2)当x为何值时,草坪面积最大?并求出最大面积.
