- 集合与常用逻辑用语
- 函数与导数
- + 二次函数的概念
- 二次函数的定义域
- 求二次函数的值域
- 求二次函数的解析式
- 二次函数的性质与图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题12分)已知函数
(1)当
时,求方程
的解;
(2)若方程
在
上有实数根,求实数
的取值范围;
(3)当
时,若对任意的
,总存在
,使
成立,求实数
的取值范围.

(1)当


(2)若方程



(3)当





某公司将进货单价为8元一个的商品按10元一个出售,每天可以卖出100个,若这种商品的售价每个上涨1元,则销售量就减少10个.
(1)求售价为13元时每天的销售利润;
(2)求售价定为多少元时,每天的销售利润最大,并求最大利润.
(1)求售价为13元时每天的销售利润;
(2)求售价定为多少元时,每天的销售利润最大,并求最大利润.
已知
是函数
的零点,
.
(1)求实数
的值;
(2)若不等式
在
上恒成立,求实数
的取值范围;
(3)若方程
有三个不同的实数解,求实数
的取值范围.



(1)求实数

(2)若不等式



(3)若方程


函数f(x)=2x2-mx+3,当x∈[-2,+∞)时,f(x)是增函数,当x∈(-∞,-2]时,f(x)是减函数,则f(1)的值为( )
A.-3 | B.13 | C.7 | D.5 |
(本小题满分12分)
某种产品投放市场以来,通过市场调查,销量t(单位:吨)与利润Q(单位:万元)的变化关系如右表,现给出三种函数
,
,
且
,请你根据表中的数据,选取一个恰当的函数,使它能合理描述产品利润Q与销量t的变化,求所选取的函数的解析式,并求利润最大时的销量.
某种产品投放市场以来,通过市场调查,销量t(单位:吨)与利润Q(单位:万元)的变化关系如右表,现给出三种函数




销量t | 1 | 4 | 6 |
利润Q | 2 | 5 | 4.5 |