- 集合与常用逻辑用语
- 函数与导数
- + 二次函数的概念
- 二次函数的定义域
- 求二次函数的值域
- 求二次函数的解析式
- 二次函数的性质与图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某企业生产某产品,年产量为
万件,收入函数和成本函数分别为
(万元),
(万元),若税收函数
(万元),(其中常数
为税率).
(1)设
,当年产量
为何值时,该产品年利润
(纳税后)有最大值,并求出最大值;
(2)若该企业目前年产量为2万件,通过技术革新等,年产量能够有所增加,为使在增加产量的同时,该企业年利润也不断增加,求政府对该产品征税时
的取值范围.





(1)设



(2)若该企业目前年产量为2万件,通过技术革新等,年产量能够有所增加,为使在增加产量的同时,该企业年利润也不断增加,求政府对该产品征税时

已知函数f(x)=ex-1,g(x)=-x2+4x-3,若有f(a)=g(b),则b的取值范围为 ( ).
A.[2-![]() ![]() | B.(2-![]() ![]() |
C.[1,3] | D.(1,3) |