- 集合与常用逻辑用语
- 函数与导数
- + 二次函数的概念
- 二次函数的定义域
- 求二次函数的值域
- 求二次函数的解析式
- 二次函数的性质与图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设a⊥b,且|a|=2,|b|=1,k,t是两个不同时为零的实数.
(1)若x=a+(t-3)b与y=-ka+tb垂直,求k关于t的函数关系式k=f(t);
(2)求出函数k=f(t)的最小值.
(1)若x=a+(t-3)b与y=-ka+tb垂直,求k关于t的函数关系式k=f(t);
(2)求出函数k=f(t)的最小值.
已知二次函数f(x)的图像的对称轴是直线x=1,且f(1)=4,f(4)=-5.
(1)求函数f(x)的解析式,并画出f(x)的图像;
(2)根据图像写出函数f(x)的单调区间,并指明在该区间上的单调性;
(3)当函数f(x)在区间(-∞,m]上是增函数时,求实数m的取值范围.
(1)求函数f(x)的解析式,并画出f(x)的图像;
(2)根据图像写出函数f(x)的单调区间,并指明在该区间上的单调性;
(3)当函数f(x)在区间(-∞,m]上是增函数时,求实数m的取值范围.