- 集合与常用逻辑用语
- 函数与导数
- 判断函数的对称性
- 由对称性求函数的解析式
- 由对称性研究单调性
- + 函数对称性的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若函数
满足:①
的图象是中心对称图形;②若
时,
图象上的点到其对称中心的距离不超过一个正数
,则称
是区间
上的“
对称函数”.若函数
是区间
上的“
对称函数”,则实数
的取值范围是________.












对于三次函数
,定义
是
的导函数
的导函数,经过讨论发现命题:“一定存在实数
,使得
成立”为真,请你根据这一结论判断下列命题:
①一定存在实数
,使得
成立;②一定存在实数
,使得
成立;③若
,则
;④若存在实数
,且
满足:
,则函数
在
上一定单调递增,所有正确的序号是( )






①一定存在实数











A.①② | B.①③ | C.②③ | D.②④ |
定义域为R的函数f(x)满足:①f(﹣x+2)=f(x+2);②f(x+1)图象关于点(﹣1,0)对称;③f(﹣2)=2.则f(2)+f(4)+f(6)+f(8)+f(10)+…+f(2018)=( )
A.2 | B.1 | C.﹣1 | D.﹣2 |