- 集合与常用逻辑用语
- 函数与导数
- 函数的单调性
- 函数的最值
- 函数的奇偶性
- + 函数的周期性
- 函数的周期性的定义与求解
- 由周期性求函数的解析式
- 函数周期性的应用
- 判断抽象函数的周期性
- 函数的对称性
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知定义在
上的奇函数
满足
,且
时,
,给出下列结论:①
;②函数
在
上是增函数;③函数
的图像关于直线
对称;④若
,则关于
的方程
在
上的所有根之和为
.则其中正确命题的序号为____________.















已知
为定义在
上的奇函数,当
时,有
,且当
时,
,下列命题正确的是( )






A.![]() | B.函数![]() ![]() |
C.直线![]() ![]() ![]() | D.函数![]() ![]() |