- 集合与常用逻辑用语
- 函数与导数
- 函数的单调性
- 函数的最值
- 函数的奇偶性
- + 函数的周期性
- 函数的周期性的定义与求解
- 由周期性求函数的解析式
- 函数周期性的应用
- 判断抽象函数的周期性
- 函数的对称性
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若定义在R上函数
的图象关于图象上点(1,0)对称,f(x)对任意的实数x都有
且f(3)=0,则函数y=f(x)在区间
上的零点个数最少有( )



A.2020个 | B.1768个 | C.1515个 | D.1514个 |
设
、
、
是定义域为
的三个函数,对于命题:①若
、
、
均为增函数,则
、
、
中至少有一个增函数;②若
、
、
均是以
为周期的函数,则
、
、
均是以
为周期的函数,下列判断正确的是()


















A.①和②均为真命题 |
B.①和②均为假命题 |
C.①为真命题,②为假命题 |
D.①为假命题,②为真命题 |
在下列命题中
①函数f(x)=
在定义域内为单调递减函数;
②已知定义在R上周期为4的函数f(x)满足f(2﹣x)=f(2+x),则f(x)一定为偶函数;
③若f(x)为奇函数,则
f(x)dx=
2f(x)dx(a>0);
④已知函数f(x)=ax3+bx2+cx+d(a≠0),则a+b+c=0是f(x)有极值的充分不必要条件;
⑤已知函数f(x)=x﹣sinx,若a+b>0,则f(a)+f(b)>0.
其中正确命题的序号为________(写出所有正确命题的序号).
①函数f(x)=


②已知定义在R上周期为4的函数f(x)满足f(2﹣x)=f(2+x),则f(x)一定为偶函数;
③若f(x)为奇函数,则


④已知函数f(x)=ax3+bx2+cx+d(a≠0),则a+b+c=0是f(x)有极值的充分不必要条件;
⑤已知函数f(x)=x﹣sinx,若a+b>0,则f(a)+f(b)>0.
其中正确命题的序号为________(写出所有正确命题的序号).
下列命题为真命题的是( )
A.命题“![]() ![]() ![]() ![]() |
B.常数数列既是等差数列也是等比数列 |
C.函数![]() |
D.若函数![]() ![]() ![]() ![]() |
若数列
和
的项数均为
,则将数列
和
的距离定义为
.
(1)求数列1,3,5,6和数列2,3,10,7的距离.
(2)记
为满足递推关系
的所有数列
的集合,数列
和
为
中的两个元素,且项数均为
.若
,
,数列
和
的距离小于2016,求
的最大值.
(3)记
是所有7项数列
(其中
,
或
)的集合,
,且
中的任何两个元素的距离大于或等于3.求证:
中的元素个数小于或等于16.






(1)求数列1,3,5,6和数列2,3,10,7的距离.
(2)记












(3)记







