- 集合与常用逻辑用语
- 函数与导数
- 函数奇偶性的定义与判断
- + 由奇偶性求函数解析式
- 函数奇偶性的应用
- 抽象函数的奇偶性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
.
(1)用定义证明函数
在
上是增函数;
(2)探究是否存在实数
,使得函数
为奇函数?若存在,求出
的值;若不存在,请说明理由;
(3)在(2)的条件下,解不等式
.

(1)用定义证明函数


(2)探究是否存在实数



(3)在(2)的条件下,解不等式

定义在R上的偶函数f(x),且对任意实数x都有f(x+2)=f(x),当x∈[0,1]时,f(x)=x2,若在区间[﹣3,3]内,函数g(x)=f(x)﹣kx﹣3k有6个零点,则实数k的取值范围为__ .