- 集合与常用逻辑用语
- 函数与导数
- 利用函数单调性求最值
- + 根据函数的最值求参数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
.
(1)若函数
的值域为[0,+∞),求实数a的取值范围;
(2)若关于x的不等式F(x)>af(x)+12恒成立,求实数a的取值范围.

(1)若函数

(2)若关于x的不等式F(x)>af(x)+12恒成立,求实数a的取值范围.
已知定义域为R的奇函数f(x),当x>0时,f(x)=ax2+bx+8(0<a<4),点A(2,0)在函数f(x)的图象上,且关于x的方程f(x)+1=0有两个相等的实根.
(1)求函数f(x)解析式;
(2)若x∈[t,t+2](t>0)时,函数f(x)有最小值1,求实数t的值.
(1)求函数f(x)解析式;
(2)若x∈[t,t+2](t>0)时,函数f(x)有最小值1,求实数t的值.
设a为常数且a<0,y=f(x)是定义在R上的奇函数,当x<0时, f(x)=x+
﹣2.若f(x)≥a+1对一切x≥0都成立,则a的取值范围为_____.

已知函数g(x)=ax2-2ax+1+b(a>0)在区间[2,4]上的最大值为9,最小值为1,记f(x)=g(|x|).
(1)求实数a,b的值;
(2)若不等式f(log2k)>f(2)成立,求实数k的取值范围.
(1)求实数a,b的值;
(2)若不等式f(log2k)>f(2)成立,求实数k的取值范围.
已知二次函数f(x)对任意实数x满足f(x+2)=f(-x+2),又f(0)=3,f(2)=1.
(1)求函数f(x)的解析式;
(2)若f(x)在[0,m]上的最大值为3,最小值为1,求m的取值范围.
(1)求函数f(x)的解析式;
(2)若f(x)在[0,m]上的最大值为3,最小值为1,求m的取值范围.
已知函数f(x)=2x+
-3,g(x)=kx+3,若存在x1∈[2,3],对任意的x2∈[-1,2],使得f(x1)<g(x2),则实数k的取值范围是( )

A.![]() | B.![]() | C.![]() | D.![]() |
已知函数f(x)=
.
(Ⅰ)若f(x)是奇函数,求实数a的值;
(Ⅱ)当0<x≤1时,|f(2x)-f(x)|≥1恒成立,求实数a的取值范围.

(Ⅰ)若f(x)是奇函数,求实数a的值;
(Ⅱ)当0<x≤1时,|f(2x)-f(x)|≥1恒成立,求实数a的取值范围.
已知函数f(x)=-x2+2mx+7.
(Ⅰ)已知函数y=(x)在区间[1,3]上的最小值为4,求m的值;
(Ⅱ)若不等式f(x)≤x2-6x+11在区间[1,2]上恒成立,求实数m的取值范围.
(Ⅰ)已知函数y=(x)在区间[1,3]上的最小值为4,求m的值;
(Ⅱ)若不等式f(x)≤x2-6x+11在区间[1,2]上恒成立,求实数m的取值范围.