- 集合与常用逻辑用语
- 函数与导数
- 函数的单调性
- + 函数的最值
- 利用函数单调性求最值
- 根据函数的最值求参数
- 函数的奇偶性
- 函数的周期性
- 函数的对称性
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知一次函数
的图像与
轴、
轴分别相交于点
,
(
分别是与
轴、
轴正半轴同方向的单位向量),函数
.
(Ⅰ)求
的值;
(Ⅱ)当
满足
时,求函数
的最小值.









(Ⅰ)求

(Ⅱ)当



已知关于
的函数
为
上的偶函数,且在区间
上的最大值为10. 设
.
⑴ 求函数
的解析式;
⑵ 若不等式
在
上恒成立,求实数
的取值范围;
⑶ 是否存在实数
,使得关于
的方程
有四个不相等的实 数根?如果存在,求出实数
的范围,如果不存在,说明理由.





⑴ 求函数

⑵ 若不等式



⑶ 是否存在实数




已知函数
对任意实数
均有
,其中常数
为负数,且
在区间
上有表达式
.
(1)写出
在
上的表达式,并写出函数
在
上的单调区间(不用过程,直接写出即可);
(2)求出
在
上的最小值与最大值,并求出相应的自变量的取值.







(1)写出




(2)求出

