- 集合与常用逻辑用语
- 函数与导数
- 函数的单调性
- + 函数的最值
- 利用函数单调性求最值
- 根据函数的最值求参数
- 函数的奇偶性
- 函数的周期性
- 函数的对称性
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知在△ABC中,B(-1,0),C(1,0),且|AB|+|AC|=4.
(1)求动点A的轨迹M的方程;
(2)P为轨迹M上的动点,△PBC的外接圆为☉O1,当点P在轨迹M上运动时,求点O1到x轴的距离的最小值.
(1)求动点A的轨迹M的方程;
(2)P为轨迹M上的动点,△PBC的外接圆为☉O1,当点P在轨迹M上运动时,求点O1到x轴的距离的最小值.
已知
、
为函数
图象的两个端点,
是
图象上任意一点,其中
,又已知向量
,若不等式
恒成立,则称函数
在
上“
阶线性近似”.若函数
在
上“
阶线性近似”,则实数
的取值范围为________.















已知函数
的定义域为
,若
常数
,对
,有
,则称函数
具有性质
,给定下列三个函数:
①
;②
;③
.
其中,具有性质
的函数的序号是( ).








①



其中,具有性质

A.① | B.③ | C.①② | D.②③ |
设函数
的定义域为
,如果存在函数
,使得
对于一切实数
都成立,那么称
为函数
的一个承托函数.
已知函数
的图象经过点
.
(
)若
,
,写出函数
的一个承托函数(结论不要求注明).
(
)判断是否存在常数
,
,
,使得
为函数
的一个承托函数,且
为函数
的一个承托函数?若存在,求出
,
,
的值;若不存在,说明理由.







已知函数


(




(











函数
是奇函数,且是在
上单调递增的函数,又
.
①则
在
上的最大值为__________.
②若
对任意
及任意
都成立,则实数
的取值范围是__________.



①则


②若




已知函数
,
.
(1)当
时,求函数
的值域;
(2)如果对任意的
,不等式
恒成立,求实数
的取值范围;
(3)是否存在实数
,使得函数
的最大值为0,若存在,求出
的值,若不存在,说明理由.


(1)当


(2)如果对任意的



(3)是否存在实数


