- 集合与常用逻辑用语
- 函数与导数
- 定义法判断函数的单调性
- + 求函数的单调区间
- 函数单调性的应用
- 根据图像判断函数单调性
- 复合函数的单调性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数y=f(x)的图象(如图所示)过点(0,2)、(1.5,2)和点(2,0),且函数图象关于点(2,0)对称;直线x=1和x=3及y=0是它的渐近线.现要求根据给出的函数图象研究函数g(x)=
的相关性质与图象.
(1)写出函数y=g(x)的定义域、值域及单调递增区间;
(2)作函数y=g(x)的大致图象(要充分反映由图象及条件给出的信息);
(3)试写出y=f(x)的一个解析式,并简述选择这个式子的理由(按给出理由的完整性及表达式的合理、简洁程度分层给分).

(1)写出函数y=g(x)的定义域、值域及单调递增区间;
(2)作函数y=g(x)的大致图象(要充分反映由图象及条件给出的信息);
(3)试写出y=f(x)的一个解析式,并简述选择这个式子的理由(按给出理由的完整性及表达式的合理、简洁程度分层给分).

.已知函数
对任意实数
均有
,当
时,
是正比例函数,当
时,
是二次函数,且在
时
取最小值
。
(1)证明:
;
(2)求出
在
的表达式;并讨论
在
的单调性。










(1)证明:

(2)求出




已知函数
=
+
有如下性质:如果常数
,那么该函数在
上是减函数,在
上是增函数.
(1)如果函数
的值域为
,求
的值;
(2)研究函数
(常数
)在定义域内的单调性,并说明理由;
(3)对函数
和
(常数
)作出推广,使它们都是你所推广的函数的特例.
(4)(理科生做)研究推广后的函数的单调性(只须写出结论,不必证明),并求函数
是正整数)在区间
上的最大值和最小值(可利用你的研究结论).






(1)如果函数



(2)研究函数


(3)对函数



(4)(理科生做)研究推广后的函数的单调性(只须写出结论,不必证明),并求函数


函数f(x)是定义在R上的偶函数,已知当x≤0时,f(x)=x2+4x+3.
(1)求函数f(x)的解析式;
(2)画出函数的图象,并写出函数f(x)的单调区间;
(3)求f(x)在区间[-1,2]上的值
(1)求函数f(x)的解析式;
(2)画出函数的图象,并写出函数f(x)的单调区间;
(3)求f(x)在区间[-1,2]上的值

下列四个命题中正确是()
A.函数![]() ![]() ![]() ![]() ![]() ![]() |
B.函数![]() ![]() |
C.函数![]() ![]() |
D.函数![]() ![]() ![]() |