- 集合与常用逻辑用语
- 函数与导数
- 函数及其表示
- + 函数的基本性质
- 函数的单调性
- 函数的最值
- 函数的奇偶性
- 函数的周期性
- 函数的对称性
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
.
(1)指出函数
的基本性质:定义域,奇偶性,单调性,值域(结论不需证明),并作出函数
的图象;
(2)若关于
的不等式
恒成立,求实数
的取值范围;
(3)若关于
的方程
恰有
个不同的实数解,求实数
的取值范围.

(1)指出函数


(2)若关于



(3)若关于




已知
是定义在
上的函数,满足
.
(1)证明:2是函数
的周期;
(2)当
时,
,求
在
时的解析式,并写出
在
(
)时的解析式;
(3)对于(2)中的函数
,若关于x的方程
恰好有20个解,求实数a的取值范围.



(1)证明:2是函数

(2)当







(3)对于(2)中的函数


已知函数
,
为常数,且
.
(1)证明函数
的图象关于直线
对称;
(2)当
时,讨论方程
解的个数;
(3)若
满足
,但
,则称
为函数
的二阶周期点,则
是否有两个二阶周期点,说明理由.



(1)证明函数


(2)当


(3)若






定义域是一切实数的函数
,其图像是连续不断的,且存在常数
(
)使得
对任意实数
都成立,则称
是一个“
—伴随函数”.有下列关于“
—伴随函数”的结论:
①
是常数函数中唯一一个“
—伴随函数”;
②“
—伴随函数”至少有一个零点;
③
是一个“
—伴随函数”;
其中正确结论的个数是( )








①


②“

③


其中正确结论的个数是( )
A.1个; | B.2个; | C.3个; | D.0个; |