- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 矩形的性质
- 矩形性质理解
- 利用矩形的性质求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- 利用矩形的性质证明
- 求矩形在平面直角坐标系中的坐标
- 矩形与折叠问题
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
矩形一个角的平分线分矩形一边为1cm和3cm两部分,则这个矩形的面积为( )
A.3cm2 | B.4cm2 | C.12cm2 | D.4cm2或12cm2 |
如图,把一个矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在A′的位置上.若OB=
,
,求点A′的坐标为__.



如图,在矩形ABCD中,AF⊥BD于E,AF交BC于点F,连接DF,则图中面积相等但不全等的三角形共有( )


A.2对 | B.3对 | C.4对 | D.5对 |
八年级(3)班同学要在广场上布置一个矩形的花坛,计划用红花摆成两条对角线,如果一条对角线用了38盆红花,还需要从花房运来多少盆红花?为什么?如果一条对角线用了49盆呢?

如图,正方形ABCD的边长为12 cm,在AB上有点P,且AP=5 cm,将正方形折叠,使点D与点P重合,折痕为EF,求△EAP的周长. 

如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F点处,已知CE=3cm,AB=8cm.求:
(1)AD的长;
(2)图中阴影部分的面积.
(1)AD的长;
(2)图中阴影部分的面积.

如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°, AC=6 cm,则AB的长是( )


A.1 cm | B.2 cm | C.3cm | D.4 cm |
如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处.求D,E两点的坐标.
