- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 矩形的性质
- 矩形性质理解
- 利用矩形的性质求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- 利用矩形的性质证明
- 求矩形在平面直角坐标系中的坐标
- 矩形与折叠问题
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在矩形ABCD中,
,
,点E在边BC上,且
.连接AE,将
沿AE折叠,若点B的对应点
落在矩形ABCD的边上,则 a的值为________.






如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形,则展开后的等腰三角形周长是


A.12 | B.18 | C.![]() | D.![]() |
问题发现
(1)如图①,Rt△ABC中,∠C=90°,AC=6,BC=8,点D是AB边上任意一点,则CD的最小值为 ;
(2)如图②,矩形ABCD中,AB=6,BC=8,点M、点N分别在ED、BC上,求CM+MN的最小值;
(3)如图③.矩形ABCD中,AB=6,BC=8,点E是AB边上一点,且AE=4,点F是EC边上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG、CG,四边形AGCD的面积是否存在最小值,若在在,求这个最小值及此时BF的长度.若不存在,请说明理由.
(1)如图①,Rt△ABC中,∠C=90°,AC=6,BC=8,点D是AB边上任意一点,则CD的最小值为 ;
(2)如图②,矩形ABCD中,AB=6,BC=8,点M、点N分别在ED、BC上,求CM+MN的最小值;
(3)如图③.矩形ABCD中,AB=6,BC=8,点E是AB边上一点,且AE=4,点F是EC边上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG、CG,四边形AGCD的面积是否存在最小值,若在在,求这个最小值及此时BF的长度.若不存在,请说明理由.

(11·钦州)把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若BF=4,FC=2,则∠DEF的度数是_ .

如图,以AB为斜边的Rt△ABC的每条边为边作三个正方形,分别是正方形ABMN,正方形BCPQ,正方形ACEF,且边EF恰好经过点N.若S3=S4=6,则S1+S5=_____.(注:图中所示面积S表示相应封闭区域的面积,如S3表示△ABC的面积)

如图,BC为Rt△ABC的斜边,∠CBA=30°,△ABD,△ACF,△BCE均为正三角形,四边形MNPE是长方形,点F在MN上,点D在NP上,若AC=2,则图中空白部分的面积是_____.
