- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 多边形及其内角和
- 平行四边形
- + 特殊的平行四边形
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图1,在菱形
中,
,
.动点
从点
出发,沿
边以每秒1个单位长度的速度运动到点
时停止,连接
,点
与点
关于直线
对称,连接
,
,设运动时间为
(秒).

(1)菱形
对角线
的长为 ;
(2)当点
恰在
上时,求t的值;
(3)当
时,求
的周长;
(4)直接写出在整个运动过程中,点
运动的路径长.
















(1)菱形


(2)当点


(3)当


(4)直接写出在整个运动过程中,点

如图(1),在矩形ABCD中,将矩形折叠,使点B落在边AD上,这时折痕与边AD和BC分别交于点E、点

A.然后再展开铺平,以B、E、F为顶点的△BEF称为矩形ABCD的“折痕三角形”.如图(2),在矩形ABCD中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E的坐标为 |

如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.
(1)证明:△APD≌△CPD;
(2)求∠CPE的度数;
(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.
(1)证明:△APD≌△CPD;
(2)求∠CPE的度数;
(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.

如图,正方形AEFG的边AE放置在正方形ABCD的对角线AC上,EF与CD交于点M,得四边形AEMD,且两正方形的边长均为2,则两正方形重合部分(阴影部分)的面积为()


A.﹣4+4![]() | B.4![]() | C.8﹣4![]() | D.![]() |
如图(1)所示,在Rt△ABC中,∠B=90°,AB=4,BC=3,将△ABC沿着AC翻折得到△ADC,如图(2),将△ADC绕着点A旋转到△AD′C′,连接CD′,当CD′∥AB时,四边形ABCD的面积为_____.

将正方形ABCD按图所示方式折叠,使A、C两点同时落在对角线BD上的点G处,折痕分别为BE、BF,则∠BEF等于( )


A.45° | B.57.5° | C.60° | D.67.5° |
如图,在菱形ABCD中,∠BAD=100°,AB的垂直平分线交AC于点F,点E为垂足,连接DF,则∠CDF=( )


A.50° | B.40° | C.30° | D.15° |