如图,在斜边为3的等腰直角三角形OAB中,作内接正方形A1B1C1D1;在等腰直角三角形OA1B1中,作内接正方形A2B2C2D2;在等腰直角三角形OA2B2中,作内接正方形A3B3C3D3…依次作下去,则第2014个正方形A2014B2014C2014D2014的边长是( )
A.B.C.D.
当前题号:1 | 题型:单选题 | 难度:0.99
已知一个底面为菱形的直棱柱,高为10 cm,体积为150 cm3,则这个棱柱的下底面积为________cm2;若该棱柱侧面展开图的面积为200 cm2,记底面菱形的顶点依次为A,B,C,D,AE是BC边上的高,则CE的长为________cm.
当前题号:2 | 题型:填空题 | 难度:0.99
如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.

(1)请判断四边形EFGH的形状?并说明为什么.
(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?
当前题号:3 | 题型:解答题 | 难度:0.99
如图,在△ABC中,AD⊥BC于D,E、F分别是AB、AC的中点,当△ABC满足条件__________时,AEDF是菱形.
当前题号:4 | 题型:填空题 | 难度:0.99
如图,在正方形ABCD中,E为AB的中点,G,F分别为AD,BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为()
A.B.2C.D.3
当前题号:5 | 题型:单选题 | 难度:0.99
我们知道,矩形是特殊的平行四边形,所以矩形除了具备平行四边形的一切性质还有其特殊的性质;同样,黄金矩形是特殊的矩形,因此黄金矩形有与一般矩形不一样的知识.
已知平行四边形ABCD,∠A=60°,AB=2a,AD=a.

(1)把所给的平行四边形ABCD用两种方式分割并作说明(见题答卡表格里的示例);
要求:用直线段分割,分割成的图形是学习过的特殊图形且不超出四个.
(2)图中关于边、角和对角线会有若干关系或问题.现在请计算两条对角线的长度.
要求:计算对角线BD长的过程中要有必要的论证;直接写出对角线AC的长.
解:在表格中作答
分割图形
分割或图形说明
示例

示例①分割成两个菱形.
②两个菱形的边长都为a,锐角都为60°.

 

 
 
当前题号:6 | 题型:解答题 | 难度:0.99
如图①,将四边形纸片ABCD沿两组对边中点连线剪切为四部分,将这四部分密铺可得到如图②所示的平行四边形,若要密铺后的平行四边形为矩形,则四边形ABCD需要满足的条件是    
当前题号:7 | 题型:填空题 | 难度:0.99
如图,在□ABCD中,E,F为BC上两点,且BE=CF,AF=DE.
求证:四边形ABCD是矩形.
当前题号:8 | 题型:解答题 | 难度:0.99
如图,在三角形纸片ABC中,AD平分∠BAC,将△ABC折叠,使点A与点D重合,展开后折痕分别交AB、AC于点E、F,连接DE、DF.求证:四边形AEDF是菱形.
当前题号:9 | 题型:解答题 | 难度:0.99
在图1至图4中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE和AD在同一直线上.
操作示例:
当AE<a时,如图1,在BA上选取适当的点G,BG=b,连接FG和CG,裁掉△FAG和△CGB并分别拼接到△FEH和△CHD的位置,恰能构成四边形FGCH.
思考发现:小明在操作后发现:该剪拼方法是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上,连接CH.由剪拼方法可得DH=BG,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH(如图所示),
实践探究:
(1)小明判断出四边形FGCH是正方形,请你给出判断四边形FGCH是正方形的方法。
(2)经测量,小明发现图1中BG是AE一半,请你证明小明的发现是正确的。(提示:过点F作FM⊥AH,垂足为点M);
拓展延伸
类比图1的剪拼方法,请你就图2至图4的三种情形分别画出剪拼成一个新正方形的示意图
当前题号:10 | 题型:解答题 | 难度:0.99