- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 多边形及其内角和
- 平行四边形
- + 特殊的平行四边形
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,E是矩形ABCD内的任意一点,连接EA、EB、EC、ED,得到△EAB、△EBC、△ECD、△EDA,设它们的面积分别是m、m、p、q,给出如下结论:
①m是n的一次函数;
②m是p的一次函数;
③若m=n,则E点一定在AC上;
④若m=n,则E点一定在BD上.
其中正确结论的序号是 ()

①m是n的一次函数;
②m是p的一次函数;
③若m=n,则E点一定在AC上;
④若m=n,则E点一定在BD上.
其中正确结论的序号是 ()

A.①③ | B.②④ | C.①②③ | D.②③④ |
菱形ABCD的边长为2,∠BAD=60°,对角线AC,BD相交于点O,动点P在线段AC上从点A向点C运动,过P作PE∥AD,交AB于点E,过P作PF∥AB,交AD于点F,四边形QHCK与四边形PEAF关于直线BD对称. 设菱形ABCD被这两个四边形盖住部分的面积为S1,AP=x:

(1)对角线AC的长为 ;S菱形ABCD= ;
(2)用含x的代数式表示S1;
(3)设点P在移动过程中所得两个四边形PEAF与QHCK的重叠部分面积为S2,当S2=
S菱形ABCD时,求x的值.

(1)对角线AC的长为 ;S菱形ABCD= ;
(2)用含x的代数式表示S1;
(3)设点P在移动过程中所得两个四边形PEAF与QHCK的重叠部分面积为S2,当S2=

如图,是一张平行四边形纸片ABCD,要求利用所学知识将它变成一个菱形,甲、乙两位同学的作法分别如下:对于甲、乙两人的作法,可判断( )


A.甲、乙均正确 | B.甲、乙均错误 | C.甲正确,乙错误 | D.甲错误,乙正确 |
已知:顺次连接矩形各边的中点,得到一个菱形,如图①;再顺次连接菱形各边的中点,得到一个新的矩形,如图②;然后顺次连接新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第2014个图形中直角三角形的个数有()


A.2014个 | B.2015个 | C.4028个 | D.6042个 |
如图,菱形ABCD中,∠B=120°,AB=2,将图中的菱形ABCD绕点A沿逆时针方向旋转,得菱形AB′C′D′1,若∠BAD′=110°,在旋转的过程中,点C经过的路线长为____ .

(8分)如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE的延长线于F点,连接AD、CF.当△ABC满足什么条件时,四边形ADCF是菱形?为什么?
