- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- + 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
阅读下列材料:小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为
,求△ABC的面积.小明是这样解决问题的:如图①所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.请回答:

(1)图1中△ABC的面积为 ;
参考小明解决问题的方法,完成下列问题:
(2)图2是一个6×6的正方形网格(每个小正方形的边长为1).
①利用构图法在答卷的图2中画出三边长分别为
、2
、
的格点△DEF;
②计算△DEF的面积.


(1)图1中△ABC的面积为 ;
参考小明解决问题的方法,完成下列问题:
(2)图2是一个6×6的正方形网格(每个小正方形的边长为1).
①利用构图法在答卷的图2中画出三边长分别为



②计算△DEF的面积.
如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形(用阴影表示).

(1)在图(a)中,画一个不含直角的三角形,使它的三边长都是有理数;
(2)在图(b)中,画一个直角三角形,使它的斜边长为
;
(3)在图(c)中,画一个直角三角形,使它的斜边长为5,直角边长都是无理数.

(1)在图(a)中,画一个不含直角的三角形,使它的三边长都是有理数;
(2)在图(b)中,画一个直角三角形,使它的斜边长为

(3)在图(c)中,画一个直角三角形,使它的斜边长为5,直角边长都是无理数.
如图是一个棱长为1的正方体的展开图,点A,B,C是展开后小正方形的顶点,连接AB,BC,则∠ABC的大小是( )


A.60° | B.50° | C.45° | D.30° |
在下列
网格中分别画出一个符合条件的直角三角形,要求三角形的顶点均在格点上,且满足:
(1)三边均为有理数;(2)其中只有一边为无理数.


(1)三边均为有理数;(2)其中只有一边为无理数.
如图,在每个小正方形的边长均为
的方格纸中,有线段
和线段
,点
、
、
、
均在小正方形的顶点上.

(1)在方格纸中画出以
为一边的锐角等腰三角形
,点
在小正方形的顶点上,且
的面积为
;
(2)在方格纸中画出以
为一边的直角三角形
,点
在小正方形的顶点上,且
的面积为5;
(3)连接
,请直接写出线段
的长.








(1)在方格纸中画出以





(2)在方格纸中画出以




(3)连接


如图,是规格为8×8的正方形网格,请在所给网格中按下列要求操作:
(1)在网格中建立平面直角坐标系,使A点坐标为(-2,4),B点坐标为(-4,2);
(2)在(1)的前提下,在第二象限内的格点上找一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则C点的坐标是;
(3)求((2)中△ABC的周长(结果保留根号);
(4)画出((2)中△ABC关于y轴对称的△A'B'C'.
(1)在网格中建立平面直角坐标系,使A点坐标为(-2,4),B点坐标为(-4,2);
(2)在(1)的前提下,在第二象限内的格点上找一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则C点的坐标是;
(3)求((2)中△ABC的周长(结果保留根号);
(4)画出((2)中△ABC关于y轴对称的△A'B'C'.

问题背景:在△ABC中,AB,BC,AC三边的长分别为
,求这个三角形的面积,小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点(即三个顶点都在小正方形的顶点处),如图所示,这样不需要求高,而借用网格就能计算出它的面积.请将△ABC的面积直接填写在横线上 .
思维拓展:我们把上述求△ABC面积的方法叫做构图法,若△ABC中,AB,BC,AC三边长分别为
,2
(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,直接写出此三角形最长边上的高是 .

思维拓展:我们把上述求△ABC面积的方法叫做构图法,若△ABC中,AB,BC,AC三边长分别为


