- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- + 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
某长方体的展开图中,
(均为格点)的位置如图所示,一只蚂蚁从点
出发,沿着长方体表面爬行.若此蚂蚁分别沿最短路线爬行到
四点,则蚂蚁爬行距离最短的路线是( )





A.![]() | B.![]() | C.![]() | D.![]() |
如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点按下列要求画图:
(1)画一个三角形△ABC,使它的三边长分别为
,
,3.
(2)方格图中所画的△ABC是不是直角三角形?请说明理由
(1)画一个三角形△ABC,使它的三边长分别为


(2)方格图中所画的△ABC是不是直角三角形?请说明理由

在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为
,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD的边长为
时,正方形EFGH的面积的所有可能值是_____ (不包括5).



如图①、图②,方格纸中的每个小正方形的边长均为1,小正方形的顶点称为格点,图①和图②中的点A、点B都是格点.分别在图①、图②中画出格点C,并满足下面的条件:
(1)在图①中,使∠ABC=90°.此时AC的长度是 .
(2)在图②中,使AB=AC.此时△ABC的边AB上的高是 .
(1)在图①中,使∠ABC=90°.此时AC的长度是 .
(2)在图②中,使AB=AC.此时△ABC的边AB上的高是 .

如图是两张形状,大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A,B均在小正方形的顶点上.
(1)在图1中画出面积为5的△ABC,且△ABC中有一个角为45°;
(2)在图2中画出△ABD,且∠ADB=90°并直接写出△ABD的周长.(C,D都在方格顶点上,每幅图画出一种情况即可)
(1)在图1中画出面积为5的△ABC,且△ABC中有一个角为45°;
(2)在图2中画出△ABD,且∠ADB=90°并直接写出△ABD的周长.(C,D都在方格顶点上,每幅图画出一种情况即可)

如图, 在方格纸中, 每一个小正方形的边长为1, 按要求画一个三角形,使它的顶点都在小方格的顶点上.
(1)在图甲中画一个以AB为边且面积为3的直角三角形
(2)在图乙中画一个等腰三角形, 使AC在三角形的内部(不包括边界)
(1)在图甲中画一个以AB为边且面积为3的直角三角形
(2)在图乙中画一个等腰三角形, 使AC在三角形的内部(不包括边界)

在
方格纸中的位置如图1所示,方格纸中的每个小正方形的边长为1个单位长度.

(1)图1中线段
的长是___________;请判断
的形状,并说明理由.
(2)请在图2中画出
,使
,
,
三边的长分别为
,
,
.
(3)如图3,以图1中
的
,
为边作正方形
和正方形
,连接
,求
的面积.


(1)图1中线段


(2)请在图2中画出







(3)如图3,以图1中






