- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- + 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
在边长为1的正方形网格中标有A、B、C、D、E、F六个格点,顶点在格点上的三角形叫做格点三角形,如格点三角形△ABC.

(1)△ABC的面积为 ;
(2)△ABC的形状为 ;
(3)根据图中标示的各点(A、B、C、D、E、F)位置,与△ABC全等的格点三角形是 .

(1)△ABC的面积为 ;
(2)△ABC的形状为 ;
(3)根据图中标示的各点(A、B、C、D、E、F)位置,与△ABC全等的格点三角形是 .
问题情境:综合实践活动课上,同学们围绕“已知三角形三边的长度,求三角形的面积”开展活动,启航小组同学想到借助正方形网格解决问题
问题解决:图(1)、图(2)都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,操作发现,启航小组同学在图(1)中画出△ABC,其顶点A,B,C都在格点上,同时构造长方形CDEF,使它的顶点都在格点上,且它的边EF经过点A,ED经过点B.同学们借助此图求出了△ABC的面积.
(1)在图(1)中,△ABC的三边长分别是AB= ,BC= ,AC= .△ABC的面积是 .
(2)已知△PMN中,PM=
,MN=2
,NP=
.请你根据启航小组的思路,在图(2)中画出△PMN,并直接写出△RMN的面积 .
问题解决:图(1)、图(2)都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,操作发现,启航小组同学在图(1)中画出△ABC,其顶点A,B,C都在格点上,同时构造长方形CDEF,使它的顶点都在格点上,且它的边EF经过点A,ED经过点B.同学们借助此图求出了△ABC的面积.
(1)在图(1)中,△ABC的三边长分别是AB= ,BC= ,AC= .△ABC的面积是 .
(2)已知△PMN中,PM=




如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.

(1)在图(1)中以格点为顶点画一个面积为10的正方形;
(2)在图(2)中以格点为顶点画一个三角形,使三角形三边长分别为2,
,
.

(1)在图(1)中以格点为顶点画一个面积为10的正方形;
(2)在图(2)中以格点为顶点画一个三角形,使三角形三边长分别为2,


如图,每个小正方形的边长是1

(1)小正方形的顶点称为格点,请以格点为端点,画出一条线段在图①中画出一条线段AB,使得AB=
,画一个面积为2的直角三角形
(2)在图②中画出一个面积是2的正方形.

(1)小正方形的顶点称为格点,请以格点为端点,画出一条线段在图①中画出一条线段AB,使得AB=


(2)在图②中画出一个面积是2的正方形.
如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,以格点为顶点分别按下列要求画三角形:
①在图甲中画出一个三边长分别为
的三角形;

②在图乙中画出2个面积为4的钝角三角形(全等的三角形只算一个).

①在图甲中画出一个三边长分别为


②在图乙中画出2个面积为4的钝角三角形(全等的三角形只算一个).

如图,在边长为1个单位长度的小正方形组成的网格中,点A、B、C在小正方形的顶点上.
(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′.
(2)四边形 ABCA′的面积为_____;
(3)在直线l上找一点P,使PA+PB的长最短,则这个最短长度为______.
(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′.
(2)四边形 ABCA′的面积为_____;
(3)在直线l上找一点P,使PA+PB的长最短,则这个最短长度为______.
