- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- + 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,所有的四边形是正方形,所有的三角形都是直角三角形,其中最大的正方形边长为13cm,则图中所有的正方形的面积之和为( )


A.169cm2 | B.196cm2 | C.338cm2 | D.507cm2 |
如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形 ABCD,正方形 CEFG,正方形 KHIJ,正方形 JLMN 的边长分别是 3,5,2,3,则最大正方形 ROPQ 的面积是( )


A.13 | B.26 | C.47 | D.94 |
如图是一株美丽的勾股树.所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形边长为
,则正方形
、
、
、
的面积的和是__________.






如图,以直角三角形的三边为边,分别向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形有( )


A.1个 | B.2个 | C.3个 | D.4个 |
如图,正方形ABCD的边长为2,其面积标记为
,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外做正方形,其面积标记为
,…,按照此规律继续下去,则
的值为()





A.![]() | B.![]() | C.![]() | D.![]() |
如图,以Rt△ABC的三边向外作正方形,若最大正方形的边长为7cm,以AC为边的正方形的面积为25cm2,则正方形M的面积为____________cm2.

如图,Rt△ABC中,∠ACB=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为( )


A.150cm2 | B.200cm2 | C.225cm2 | D.无法计算 |