- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- + 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在Rt△ABC中,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为”希波克拉底月牙”,当AC=4,BC=2时,则阴影部分的面积为_____.

如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,已知正方形A、B、C的面积依次为2、4、3,则正方形D的面积为___________.

如图,所有的四边形都是正方形,所有的三角形都是直角三角形。若正方形A、B、C、D的边长是3、5、2、3,则最大正方形E的面积是


A.13 | B.2![]() | C.47 | D.![]() |
如图1,以直角三角形的各边边边分别向外作正三角形,再把较小的两张正三角形纸片按图2的方式放置在最大正三角形内.若知道图中阴影部分的面积,则一定能求出( )


A.直角三角形的面积 | B.较小两个正三角形重叠部分的面积 |
C.最大正三角形的面积 | D.最大正三角形与直角三角形的面积差 |
勾股定理是人类最伟大的科学发明之一.如图1,以直角三角形
的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大的正方形内,三个阴影部分面积分别记为
,
,
,若已知
,
,
,则两个较小正方形纸片的重叠部分(四边形
)的面积为( )











A.![]() | B.![]() | C.![]() | D.![]() |
如图,分别以直角三角形各边为一边向三角形外部作正方形,其中两个正方形的面积分别为10 cm2和26 cm2,则正方形A的边长是________cm.

课本第78页阅读材料《从勾股定理到图形面积关系的拓展》中有如下问题:如图①分别以直角三角形的三条边为边,向形外分别作正三角形,则图中的
,
,
满足的数量关系是_____. 现将△ABF向上翻折,如图②,已知
,
,
,则△ABC的面积是_____.







如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,
,
,将四个直角三角形中边长为3的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长(图中实线部分)是__________.


