- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,小明(视为小黑点)站在一个高为10米的高台A上,利用旗杆OM顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B.那么小明在荡绳索的过程中离地面的最低点的高度MN是( )


A.2米 B.2.2米 | B.2.5米 | C.2.7米 |
如图1,在△ABC中,AB=2,AC=
,AD是△ABC的高,且 BD=1.
(1)求 BC的长.
(2)E是边AC上的一点,作射线BE,分别过点A、C 作 AF⊥BE于点 F,CG⊥BE于点 G,如图2,若 BE=
,求 AF与 CG的和.

(1)求 BC的长.
(2)E是边AC上的一点,作射线BE,分别过点A、C 作 AF⊥BE于点 F,CG⊥BE于点 G,如图2,若 BE=


课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.
(1)求证:△ADC≌△CEB;
(2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).

(1)求证:△ADC≌△CEB;
(2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).

有下列说法:①有理数与数轴上的点一一对应;②直角三角形的两边长是5和12,则第三边
长是13;③近似数1.5万精确到十分位;④无理数是无限小数.其中错误说法的个数有( )
长是13;③近似数1.5万精确到十分位;④无理数是无限小数.其中错误说法的个数有( )
A.4个 | B.3个 | C.2个 | D.1个 |
(1)如图1,等腰三角形ABC中,AB=AC,点D是BC的中点,DE⊥AB与点E、DF⊥AC与点F.求证:DE= DF;
(2)如图2,等腰三角形ABC中,AB=AC=13,BC=10,点D是BC边上的动点,DE⊥AB与点E、DF⊥AC与点F.请问DE+DF的值是否随点D位置的变化而变化?若不变,请直接写出DE+DF的值;若变化,请说明理由.

(2)如图2,等腰三角形ABC中,AB=AC=13,BC=10,点D是BC边上的动点,DE⊥AB与点E、DF⊥AC与点F.请问DE+DF的值是否随点D位置的变化而变化?若不变,请直接写出DE+DF的值;若变化,请说明理由.
