- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在平面直角坐标系xOy中,点A的坐标是(0,2),点C是x轴上的一个动点.当点C在x轴上移动时,始终保持△ACP是等边三角形(点A、C、P按逆时针方向排列);当点C移动到点O时,得到等边三角形AOB(此时点P与点B重合)


初步探究
(1)写出点B的坐标 ;
(2)点C在x轴上移动过程中,当等边三角形ACP的顶点P在第三象限时,连接BP,求证:△AOC≌△ABP.
深入探究
(3)当点C在x轴上移动时,点P也随之运动.探究点P在怎样的图形上运动,请直接写出结论;
拓展应用
(4)点C在x轴上移动过程中,当△POB为等腰三角形时,直接写出此时点C的坐标.


初步探究
(1)写出点B的坐标 ;
(2)点C在x轴上移动过程中,当等边三角形ACP的顶点P在第三象限时,连接BP,求证:△AOC≌△ABP.
深入探究
(3)当点C在x轴上移动时,点P也随之运动.探究点P在怎样的图形上运动,请直接写出结论;
拓展应用
(4)点C在x轴上移动过程中,当△POB为等腰三角形时,直接写出此时点C的坐标.
如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子
的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点
的位置,问船向岸边移动了______米.(假设绳子是直的)



已知,如图,在四边形ABCD中,∠A=90°.若AB=4cm,AD=3cm,CD=12cm,BC=13cm,
(1)请说明BD⊥CD;
(2)求四边形ABCD的面积.
(1)请说明BD⊥CD;
(2)求四边形ABCD的面积.

已知:如图,在Rt△ABC中,∠ACB=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以2cm/s的速度运动,设运动的时间为t秒,
(1)当△ABP为直角三角形时,求t的值:
(2)当△ABP为等腰三角形时,求t的值.
(本题可根据需要,自己画图并解答)
(1)当△ABP为直角三角形时,求t的值:
(2)当△ABP为等腰三角形时,求t的值.
(本题可根据需要,自己画图并解答)

如图,在△ABC中,∠ABC=90°,AB=BC, BD⊥AC,垂足为D,过点D作DE⊥DF,交AB于点E,交BC于点F.

(1)求证:△DBE≌△DCF;
(2)连接EF,若AE=4,FC=3;求
①EF的长;
②四边形BFDE的面积.

(1)求证:△DBE≌△DCF;
(2)连接EF,若AE=4,FC=3;求
①EF的长;
②四边形BFDE的面积.
如图,在△ABC中,∠C=90°,∠CAD=∠BAD,DE⊥AB于E,点F在边AC上,连接DF.

(1)求证:AC=AE;
(2)若CF=BE,直接写出线段AB,AF,EB的数量关系: .
(3)若AC=8,AB=10,且△ABC的面积等于24,求DE的长.

(1)求证:AC=AE;
(2)若CF=BE,直接写出线段AB,AF,EB的数量关系: .
(3)若AC=8,AB=10,且△ABC的面积等于24,求DE的长.
在Rt△ABC中,∠C=90°,AC=3.将其绕B点顺时针旋转一周,则分别以BA、BC为半径的圆形成一圆环,该圆环的面积为( )


A.π | B.3π | C.6π | D.9π |
如图,某校A与公路距离为3千米,又与该公路旁上的某车站D的距离为5千米,现要在公路边建一个商店C,使之与该校A及车站D的距离相等,则商店与车站的距离约为多少?
