- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
把一副三角板按如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O、与D1E1相交于点F.

(1)求∠OFE1的度数;
(2)求线段AD1的长;
(3)若把△DCE绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部、外部、还是边上?说明理由.

(1)求∠OFE1的度数;
(2)求线段AD1的长;
(3)若把△DCE绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部、外部、还是边上?说明理由.
如图所示,雪天路滑,为了让学生进教学楼更安全,校方特意在楼梯上铺了防滑地毯(图中虚线部分),小明同学测得
,并且从老师那里得知地毯总长度为
厘米,那么这段楼梯的高度
为__________.




如图Rt△ABC中,AB=BC=4,D为BC的中点,在AC边上存在一点E,连接ED,EB,则△BDE周长的最小值为( )


A.2![]() | B.2![]() | C.2![]() | D.2![]() |
如图,在Rt△ABC中,∠C=90°,AC=
,点D为BC边上一点,且BD=2AD,∠ADC=60°,求△ABC的周长(结果保留根号).

