- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
阅读下面的情景对话,然后解答问题:
老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.
小明:那直角三角形是否存在奇异三角形呢?
小红:等边三角形一定是奇异三角形.
(1)根据“奇异三角形”的定义,小红得出命题:“等边三角形一定是奇异三角形”,则小红提出的命题是 .(填“真命题”或“假命题”)
(2)若
是奇异三角形,其中两边的长分别为
、
,则第三边的长为 .
(3)如图,
中,
,以
为斜边作等腰直角三角形
,点
是
上方的一点,且满足
.求证:
是奇异三角形.
老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.
小明:那直角三角形是否存在奇异三角形呢?
小红:等边三角形一定是奇异三角形.
(1)根据“奇异三角形”的定义,小红得出命题:“等边三角形一定是奇异三角形”,则小红提出的命题是 .(填“真命题”或“假命题”)
(2)若



(3)如图,









(1)如图,在四边形
中,
,
,
,
,
,求证:
.
(2)如图,在离水面高度为
米的岸上,有人用绳子拉船靠岸,开始时绳子
的长为
米,此人以
米每秒的速度收绳,
秒后船移动到点
的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号).








(2)如图,在离水面高度为







如图,菱形ABCD的边长为4,∠A=60°,E是边AD的中点,F是边BC上的一个动点,EG=EF,且∠GEF=60°,则GB+GC的最小值为________.

将四根长度相等的细木条首尾顺次相接,用钉子钉成四边形ABCD,转动这个四边形可以使它的形状改变. 当∠B=60°时,如图(1),测得AC=2;当∠B=90°时,如图(2),此时AC的长为( )


A.![]() | B.2 | C.![]() | D.![]() |