- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 勾股定理
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 勾股定理的应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.

(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.则∠C=度,∠D=度.
(2)在探究“等对角四边形”性质时:
①小红画了一个“等对角四边形ABCD”(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;
②在①的条件下,若∠ABC=∠ADC=90°,AB=AD=4,∠BCD=60°,求等对角四边形ABCD的面积.

(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.则∠C=度,∠D=度.
(2)在探究“等对角四边形”性质时:
①小红画了一个“等对角四边形ABCD”(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;
②在①的条件下,若∠ABC=∠ADC=90°,AB=AD=4,∠BCD=60°,求等对角四边形ABCD的面积.
魏朝时期,刘徽利用下图通过“以盈补虚,出入相补”的方法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”,证明了勾股定理.若图中BF=1,CF=2,则AE的长为__________.

如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.
(1)在方格纸中画以AB为斜边的等腰直角三角形ABE;
(2)在方格纸中画以CD为一边的三角形CDF,点F在小正方形的顶点上,且三角形CDF的面积为5,tan∠DCF=
,连接EF,并直接写出线段EF的长.
(1)在方格纸中画以AB为斜边的等腰直角三角形ABE;
(2)在方格纸中画以CD为一边的三角形CDF,点F在小正方形的顶点上,且三角形CDF的面积为5,tan∠DCF=


如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若DG=3,EC=1,则DE的长为( )


A.![]() ![]() | B.![]() | C.![]() |
把两个三角形按如图1放置,其中
,
,AB=6cm且
.把△DCE绕点C顺时针旋转15°得到△D1CE1,如图2,这时AB与CD1相交于点
,与D1E1相交于点F.
(1)求∠ACD1的度数;
(2)求线段AD1的长;
(3)若把△D1CE1绕点
顺时针再旋转30°得到△D2CE2,这时点B在△D2CE2的内部、外部、还是边上?请说明理由.




(1)求∠ACD1的度数;
(2)求线段AD1的长;
(3)若把△D1CE1绕点


阅读下列材料,并回答问题.
画一个直角三角形,使它的两条直角边分别为5和12,那么我们可以量得直角三角形的斜边长为13,并且52+122=132.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方.如果直角三角形中,两直角边长分别为a、b,斜边长为c,则a2+b2=c2,这个结论就是著名的勾股定理.
请利用这个结论,完成下面的活动:
(1)一个直角三角形的两条直角边分别为6、8,那么这个直角三角形斜边长为______.
(2)满足勾股定理方程a2+b2=c2的正整数组(a,b,c)叫勾股数组.例如(3,4,5)就是一组勾股数组.观察下列几组勾股数
①3,4,5; ②5,12,13; ③7,24,25;④9,40,41;
请你写出有以上规律的第⑤组勾股数:______.
(3)如图,AD⊥BC于D,AD=BD,AC=B

(4)如图,点A在数轴上表示的数是______,请用类似的方法在下图数轴上画出表示数
的B点(保留作图痕迹).
画一个直角三角形,使它的两条直角边分别为5和12,那么我们可以量得直角三角形的斜边长为13,并且52+122=132.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方.如果直角三角形中,两直角边长分别为a、b,斜边长为c,则a2+b2=c2,这个结论就是著名的勾股定理.
请利用这个结论,完成下面的活动:
(1)一个直角三角形的两条直角边分别为6、8,那么这个直角三角形斜边长为______.
(2)满足勾股定理方程a2+b2=c2的正整数组(a,b,c)叫勾股数组.例如(3,4,5)就是一组勾股数组.观察下列几组勾股数
①3,4,5; ②5,12,13; ③7,24,25;④9,40,41;
请你写出有以上规律的第⑤组勾股数:______.
(3)如图,AD⊥BC于D,AD=BD,AC=B
A.AC=3,DC=1,求BD的长度. |

(4)如图,点A在数轴上表示的数是______,请用类似的方法在下图数轴上画出表示数


已知矩形ABCD,现将矩形沿对角线BD折叠,得到如图所示的图形,

(1)求证:△ABE≌△C’ DE
(2)若AB=6,AD=10,求S△ABE

(1)求证:△ABE≌△C’ DE
(2)若AB=6,AD=10,求S△ABE
如图,在梯形ABCD中,AD//BC,E是BC的中点,AD="5" cm,BC="12" cm,CD=
cm,∠C=45°,点P从B点出发,沿着BC方向以1cm/s运动,到达点C停止,设P运动了ts。
(1)当t为何值时以点P、A、D、E为顶点的四边形为直角梯形;
(2)当t为何值时以点P、A、D、E为顶点的四边形为平行四边形;
(3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能否构成菱形?如能,请求出t值,如不能请说明理由。

(1)当t为何值时以点P、A、D、E为顶点的四边形为直角梯形;
(2)当t为何值时以点P、A、D、E为顶点的四边形为平行四边形;
(3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能否构成菱形?如能,请求出t值,如不能请说明理由。
