- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 勾股定理
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 勾股定理的应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,D、E分别为△ABC的边AB、AC上的点,△ACD与△BCD的周长相等,△ABE与△CBE的周长相等,记△ABC的面积为S.若∠ACB=90°,则AD·CE与S的大小关系为( ).


A.S=AD·CE | B.S>AD·CE | C.S<AD·CE | D.无法确定 |
如图是一直角三角形纸片,两直角边AC=6,BC=8,现将直角三角形沿直线AD折叠,使AC边落在斜边AB上,且与AE重合.

(1)求EB长;
(2)求△DBE的面积.

(1)求EB长;
(2)求△DBE的面积.
如图所示,在矩形ABCD中,对角线AC、BD相交于O,OE⊥AC于O交BC于E,连接AE,若AB=1,AD=
,则AE= ()



A.![]() | B.![]() | C.![]() | D.2 |
图(a)、图(b)是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a)、图(b)中,分别画出符合要求的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.



如图.在Rt△ABC中,∠ABC=90°,点D是斜边上的中点,点P在AB上,PE⊥BD于E,PF⊥AC于F,若AB=6,BC=3,则PE+PF=( )


A.![]() | B.![]() ![]() | C.![]() ![]() | D.![]() ![]() |
如图为一直角三角形纸片,∠C=90°,两直角边AC=6㎝,BC=8㎝,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,求CD的长.
