如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()


A.1个 | B.2个 | C.3个 | D.3个以上 |
操作探究:如图,对折长方形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A 落在EF 上(设落点为N),并使折痕经过点B,得到折痕BM,连接BN,MN.则∠MBN的度数为( )


A.20° | B.25° | C.30° | D.35° |
综合与探究:
如图在等边三角形ABC中,线段AM为BC边上的中线,动点D在直线AM上时,以CD为一边在CD的下方作等边三角形CDE,连接BE.

(1)填空:∠CAM= ;
(2)若点D在线段AM上时,求证:△ADC≌△BEC;
(3)当动点D在直线AM上时,设直线BE与直线AM的交点为O,
①当点D在线段AM上时,求∠AOB的度数;
②当动点D在直线AM上时,试判断∠AOB是否为定值?并说明理由.
如图在等边三角形ABC中,线段AM为BC边上的中线,动点D在直线AM上时,以CD为一边在CD的下方作等边三角形CDE,连接BE.

(1)填空:∠CAM= ;
(2)若点D在线段AM上时,求证:△ADC≌△BEC;
(3)当动点D在直线AM上时,设直线BE与直线AM的交点为O,
①当点D在线段AM上时,求∠AOB的度数;
②当动点D在直线AM上时,试判断∠AOB是否为定值?并说明理由.
如图所示,在等边△ABC中,E是AC边的中点,AD是BC边上的中线,P是AD上的动点,若AD=5,则EP+CP的最小值为( )


A.2 | B.4 | C.5 | D.7 |
如图,点O是等边△ABC内一点,∠BOC=
,∠AOC=100°,将△BOC绕点B按逆时针方向旋转60°得到△BDA,连接O


A. (1) 求证:△BOD是等边三角形. (2) 当 ![]() (3) 若△AOD是等腰三角形,请你直接写出 ![]() |

如图,△ABC和△CDE都是等边三角形,B,C,D三点在一条直线上,AD与BE交于点P,AC,BE交于点M,AD,CE交于点N,连接MN,则下列五个结论:①AD=BE;②∠BMC=∠ANE;③∠APM=60°;④AN=BM;⑤△CMN是等边三角形.其中一定正确的是__________.(填出所有正确结论的序号)

如图1,△ABC是等边三角形,D是边BC上的任意一点,∠ADF=60°,且DF交∠ACE的角平分线于点F.


(1)求证:AC=CD+CF;
(2)如图2,当点D在BC的延长上时,猜想AC、CD、CF的数量关系,并证明你的猜想.


(1)求证:AC=CD+CF;
(2)如图2,当点D在BC的延长上时,猜想AC、CD、CF的数量关系,并证明你的猜想.