刷题首页
题库
初中数学
题干
如图1, △ABC和△CDE均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a,且点A、D、E在同一直线上,连结BE.
(1)求证: AD=BE.
(2)如图2,若a=90°,CM⊥AE于E.若CM=7, BE=10, 试求AB的长.
(3)如图3,若a=120°, CM⊥AE于E, BN⊥AE于N, BN=a, CM=b,直接写出AE的值(用a, b 的代数式表示).
上一题
下一题
0.99难度 解答题 更新时间:2019-12-23 03:44:31
答案(点此获取答案解析)
同类题1
如图,等边
中,
,
是高
所在直线上的一个动点,连接
,将线段
绕点
逆时针旋转60°得到
,连接
.在点
运动过程中,线段
长度的最小值是( )
A.12
B.9
C.6
D.3
同类题2
实践与探究
在平面直角坐标系中,四边形AOBC是矩形,点
(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,
A.
(1)如图(1),当点D落在BC边上时,求点D的坐标;
(2)如图(2),当点D落在线段BE上时,AD与BC交于点H.
①求证:ΔADB≌ΔAOB;
②求点H的坐标.
同类题3
如图,平面内有一等腰直角三角形
ABC
(∠
ACB
=90°)和一直线
MN
.过点
C
作
CE
⊥
MN
于点
E
,过点
B
作
BF
⊥
MN
于点
F
,小明同学过点
C
作
BF
的垂线,如图1,利用三角形全等证得
AF
+
BF
=2
CE
.
(1)若三角板绕点
A
顺时针旋转至图2的位置,其他条件不变,试猜想线段
AF
、
BF
、
CE
之间的数量关系,并证明你的猜想.
(2)若三角板绕点
A
顺时针旋转至图3的位置,其他条件不变,则线段
AF
、
BF
、
CE
之间的数量关系为
.
同类题4
如图,△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=90°,AC、BD交于点M.(1) 如图1,求证:AC=BD,判断AC与BD的位置关系并说明理由;
(2) 如图2,∠AOB=∠COD=60°时,∠AMD的度数为___________.
相关知识点
图形的性质
三角形
全等三角形
三角形全等的判定
全等三角形的辅助线问题
全等三角形——旋转模型