刷题首页
题库
初中数学
题干
如图,∠AOB=120°,OC平分∠AOB,∠MCN=60°,CM与射线OA相交于M点,CN与直线BO相交于N点.把∠MCN绕着点C旋转.
(1)如图1,当点N在射线OB上时,求证:OC=OM+ON;
(2)如图2,当点N在射线OB的反向延长线上时,OC与OM,ON之间的数量关系是
(直接写出结论,不必证明)
上一题
下一题
0.99难度 解答题 更新时间:2019-12-17 11:42:30
答案(点此获取答案解析)
同类题1
正方形ABCD的边长为1,AB、AD上各有一点P、Q,如果
的周长为2,求
的度数.
同类题2
如图,将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC相交于点F,连接DA、BF,∠ABC=α=60°,BF=A
A.
(1)求证:DA∥BC;
(2)猜想线段DF、AF的数量关系,并证明你的猜想.
同类题3
问题背景:如图
,点
为线段
外一动点,且
,若
,
,连接
,求
的最大值.解决方法:以
为边作等边
,连接
,推出
,当点
在
的延长线上时,线段
取得最大值
.
问题解决:如图
,点
为线段
外一动点,且
,若
,
,连接
,当
取得最大值时,
的度数为
_________
.
同类题4
如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.
探究:在下面两种条件下,线段BM、MN、NC之间的关系,并加以证明.
①AN=NC(如图②); ②DM//AC(如图③).
思考:若点M、N分别是射线AB、CA上的点,其它条件不变,再探线段BM、MN、NC之间的关系,在图④中画出图形,并说明理由.
同类题5
如图,B、C、E三点在一条直线上,⊿ABC和⊿DCE都为等边三角形,连接AE、DB、
(1)试说出 AE=BD的理由、
(2)如果把⊿DCE绕C点顺时针旋转一个角度,使B、C、E不在一条直线上,(1)中的结论还成立吗?(只回答,不说理由)
(3)在(2)中若AE、BD相交于P, 求∠APB的度数、
相关知识点
图形的性质
三角形
全等三角形
三角形全等的判定
全等三角形的辅助线问题
全等三角形——旋转模型