- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 全等三角形的概念及性质
- + 三角形全等的判定
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 角平分线的性质与判定
- 线段垂直平分线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,AD是△ABC的中线,AB=AC,∠BAC=45°,过点C作CE⊥AB于点E,交AD于点

A.试判断AF与CD之间的关系,并证明. |

如图,在等腰Rt△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB于D,若AB=10,则△BDE的周长等于_.

在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=D

(1)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是 ;此时
= ;
(2)如图2,点M、N在边AB、AC上,且当DM≠DN时,猜想( I)问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.
(3)如图3,当M、N分别在边AB、CA的延长线上时,探索BM、NC、MN之间的数量关系如何?并给出证明.
A.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及△AMN的周长x与等边△ABC的周长y的关系. |

(1)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是 ;此时

(2)如图2,点M、N在边AB、AC上,且当DM≠DN时,猜想( I)问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.
(3)如图3,当M、N分别在边AB、CA的延长线上时,探索BM、NC、MN之间的数量关系如何?并给出证明.
如图1,点
是线段
的中点,分别以
和
为边在线段
的同侧作等边三角形
和等边三角形
,连结
和
,相交于点
,连结
,
(1)求证:
;
(2)求
的大小;
(3)如图2,
固定不动,保持
的形状和大小不变,将
绕着点
旋转(
和
不能重叠),求
的大小.











(1)求证:

(2)求

(3)如图2,








探索与证明:

(1)如图1,直线
经过正三角形
的项点
,在直线
上取两点
,
,使得
,
.通过观察或测量,猜想线段
,
与
之间满足的数量关系,并子以证明:
(2)将(1)中的直线
绕着点
逆时针方向旋转一个角度到如图2的位置,并使
,
.通过观察或测量,猜想线段
,
与
之间满足的数量关系,并予以证明.

(1)如图1,直线











(2)将(1)中的直线







如图,在
中,
,点
是
边上一点(不与
重合),以
为边在
的右侧作
,使
,
,连接
,设
,
.
(1)求证:
;
(2)探究:当点
在
边上移动时,
之间有怎样的数量关系?请说明理由.













(1)求证:

(2)探究:当点



