- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 全等三角形的概念及性质
- + 三角形全等的判定
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 角平分线的性质与判定
- 线段垂直平分线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠BAC,DE⊥AB于E,有下列结论:①DE=DC;②∠BDE=∠ADC;③AB=2AC;④图中共有两对全等三角形.其中正确的是:____________(填序号即可).

如图,已知A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥A

A.且已知AB=C | B. (1)试问DB平分EF能成立吗?请说明理由. (2)若△DEC的边EC沿AC方向移动,其余条件不变,如图,上述结论是否仍成立?请说明理由. |

如图,C是AB的中点,∠A=∠BCE,请添加一个条件,使△ACD≌△CBE,这个添加的条件可以是_____.(只需写一个,不添加辅助线)

如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A,B重合),BE⊥CD于E,交直线AC于F.
(1)点D在边AB上时,试探究线段BD,AB和AF的数量关系,并证明你的结论;
(2)点D在AB的延长线上时,试探究线段BD,AB和AF的数量关系,并证明你的结论.
(1)点D在边AB上时,试探究线段BD,AB和AF的数量关系,并证明你的结论;
(2)点D在AB的延长线上时,试探究线段BD,AB和AF的数量关系,并证明你的结论.

如图,点G、E、F分别在平行四边形ABCD的边AD、BC和DC上,DG=DC,CE=CF,点P是线段CG上一点,连接FP,EP.求证:FP=EP.
