- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 全等三角形的概念及性质
- + 三角形全等的判定
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 角平分线的性质与判定
- 线段垂直平分线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知:如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.OD⊥AB,OE⊥A

A. (1)求证:OD=O | B. (2)若O为MN的中点,判断△ABC的形状,并说明理由. |

如图,
为线段
上一动点(不与点
,
重合),在
同侧分别作等边
和等边
,
与
交于点
,
与
交于点
,
与
交于点
,连接
.下列五个结论:①
;②
;③
;④DE=DP;⑤
.其中正确结论的个数是( )























A.2个 | B.3个 | C.4个 | D.5个 |
如图1,点
,
分别是等边
边
,
上的动点,点
从顶点
向点
运动,点
从顶点
向点
运动,两点同时出发,且它们的速度都相同.
(1)连接
,
交于点
,则在
,
运动的过程中,
的大小发生变化吗?若变化,则说明理由,若不变,则求出它的度数;
(2)如图2,若点
,Q在运动到终点后继续在射线
,
上运动,直线
、
交点为
,则
的大小发生变化吗?若变化,则说明理由,若不变,则求出它的度数. 











(1)连接






(2)如图2,若点








在“学本课堂”的实践中,王老师经常让学生以“问题”为中心进行自主、合作、探究学习.

(课堂提问)王老师在课堂中提出这样的问题:如图1,在Rt△ABC中,∠ACB=90°,∠BAC=30°,那么BC和AB有怎样的数量关系?
(互动生成)经小组合作交流后,各小组派代表发言.
(1)小华代表第3小组发言:AB=2BC. 请你补全小华的证明过程.
证明:把△ABC沿着AC翻折,得到△ADC.
∴∠ACD=∠ACB=90°,
∴∠BCD=∠ACD+∠ACB=90°+90°=180°,
即:点B、C、D共线.
(请在下面补全小华的证明过程)
(2)受到第3小组“翻折”的启发,小明代表第2小组发言:如图2,在△ABC中,如果把条件“∠ACB=90°”改为“∠ACB=135°”,保持“∠BAC=30°”不变,若BC=1,求AB的长.

(能力迁移)我们发现,翻折可以探索图形性质,请利用翻折解决下面问题.
如图3,点D是△ABC内一点,AD=AC,∠BAD=∠CAD=20°,∠ADB+∠ACB=210°,则AD、DB、BC三者之间的数量关系是 .

(课后拓展)如图4,在四边形ABCD中,∠BCD=45°,∠BAD=90°,∠ADB=∠CDB=60°,且AC=1,
则△ABD的周长为 .

(课堂提问)王老师在课堂中提出这样的问题:如图1,在Rt△ABC中,∠ACB=90°,∠BAC=30°,那么BC和AB有怎样的数量关系?
(互动生成)经小组合作交流后,各小组派代表发言.
(1)小华代表第3小组发言:AB=2BC. 请你补全小华的证明过程.
证明:把△ABC沿着AC翻折,得到△ADC.
∴∠ACD=∠ACB=90°,
∴∠BCD=∠ACD+∠ACB=90°+90°=180°,
即:点B、C、D共线.
(请在下面补全小华的证明过程)
(2)受到第3小组“翻折”的启发,小明代表第2小组发言:如图2,在△ABC中,如果把条件“∠ACB=90°”改为“∠ACB=135°”,保持“∠BAC=30°”不变,若BC=1,求AB的长.

(能力迁移)我们发现,翻折可以探索图形性质,请利用翻折解决下面问题.
如图3,点D是△ABC内一点,AD=AC,∠BAD=∠CAD=20°,∠ADB+∠ACB=210°,则AD、DB、BC三者之间的数量关系是 .

(课后拓展)如图4,在四边形ABCD中,∠BCD=45°,∠BAD=90°,∠ADB=∠CDB=60°,且AC=1,
则△ABD的周长为 .

(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图①,已知:在△ABC中,∠BAC=90°AB=AC,直线l经过点A,BD⊥直线L,CE⊥直线L,垂足分别为点D、
(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线L上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
A.证明:①△ABD≌△CAE;②DE=BD+CE。 |
