如图,直线yx+1分别交x轴、y轴于点AC,点B是点A关于y的对称点,点D是线段BC上一点,把△ABD沿AD翻折使AB落在射线AC上,得△AB'D,则△ABC与△AB'D重叠部分的面积为(  )
A.B.C.D.
当前题号:1 | 题型:单选题 | 难度:0.99
一辆轿车从甲城驶往乙城,同时一辆卡车从乙城驶往甲城,两车沿相同路线匀速行驶,轿车到达乙城停留一段时间后按原路返回:卡车到达甲城比轿车返回甲城早0.5小时,两车到达甲城后均停止行驶,两车距离甲城的路程ykm)与出发时间th)之间的关系如图1所示,请结合图象提供的信息解答下列问题:
(1)求轿车和卡车的速度;
(2)求CD段的函数解析式;
(3)若设在行驶过程中,轿车与卡车之间的距离为Skm)行驶的时间为th),请你在图2中画出Skm)关于th)函数的图象,并标出每段函数图象端点的坐标.
当前题号:2 | 题型:解答题 | 难度:0.99
如图,直线Lyx,点A坐标为(0,1),过点Ay轴的垂线交直线L于点B1OB1为边作等边三角形OA1B1,再过点A1y轴的垂线交直线L于点B2,以OB2为边作等边三角形OA2B2,……,按此做法进行下去,点A2019的坐标为_____.
当前题号:3 | 题型:填空题 | 难度:0.99
如图,在平面直角坐标系中,点O为坐标原点,点A在y轴的正半轴上,点B在x轴的负半轴上,点C是线段AB上一动点CD⊥y轴于点D,CE⊥x轴于点E,OA=6,AD=O
A.

(1)求直线AB的解析式;
(2)连接ED,过点C作CF⊥ED,垂足为F,过点B作x轴的垂线交FC的延长线于点G,求点G的坐标;
(3)在(2)的条件下,连接AG,作四边形AOBG关于y轴的对称图形四边形AONM,连接DN,将线段DN绕点N逆时针旋转90°得到线段PN,H为OD中点,连接MH、PH,四边形MHPN的面积为40,连接FH,求线段FH的长.
当前题号:4 | 题型:解答题 | 难度:0.99
如图,在平面直角坐标系xOy中,直线与x轴,y轴分别交于点A,B,Q为内部一点,则的最小值等于(    )
A.B.C.D.
当前题号:5 | 题型:单选题 | 难度:0.99
已知如图,直线y=﹣ x+4 与x轴相交于点A,与直线y= x相交于点P.
(1)求点P的坐标;
(2)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于
A.设运动t秒时, F的坐标为(a,0),矩形EBOF与△OPA重叠部分的面积为S.直接写出: S与a之间的函数关系式
(3)若点M在直线OP上,在平面内是否存在一点Q,使以A,P,M,Q为顶点的四边形为矩形且满足矩形两边AP:PM之比为1: 若存在直接写出Q点坐标。若不存在请说明理由。
当前题号:6 | 题型:解答题 | 难度:0.99
在平面直角坐标系中,点A的坐标(-3,2),将点A绕若点O顺时针旋转90°得到点B若正比例函效y=kx的图象经过点B,则k的值为( )
A.6B.-6C.D.
当前题号:7 | 题型:单选题 | 难度:0.99
如图,长方形ABCD中,点P沿着边按BCDA方向运动,开始以每秒m个单位匀速运动、a秒后变为每秒2个单位匀速运动,b秒后恢复原速匀速运动,在运动过程中,△ABP的面积S与运动时间t的函数关系如图所示.

(1)直接写出长方形的长和宽;
(2)求mab的值;
(3)当P点在AD边上时,直接写出St的函数解析式.
当前题号:8 | 题型:解答题 | 难度:0.99