- 数与式
- 方程与不等式
- 函数
- 一次函数的实际应用——分配方案问题
- 一次函数的实际应用——最大利润问题
- 一次函数的实际应用——行程问题
- + 一次函数的实际应用——几何问题
- 一次函数的实际应用——其他问题
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
一个三角形以A(0,0)、B(1,1)及C(9,1)为三个顶点,一条与x轴垂直的直线将该三角形划分成面积相等的两部分,则此直线的解析式为_______.
如图直线y=kx+k交x轴负半轴于点A,交y轴正半轴于点B,且AB=2
(1)求k的值;
(2)点P从A出发,以每秒1个单位的速度沿射线AB运动,过点P作直线AB的垂线交x轴于点Q,连接OP,设△PQO的面积为S,点P运动时间为t,求S与t的函数关系式,并直接写出t的取值范围;
(3)在(2)的条件下,当P在AB的延长线上,若OQ+AB=
(BQ﹣OP),求此时直线PQ的解析式.
(1)求k的值;
(2)点P从A出发,以每秒1个单位的速度沿射线AB运动,过点P作直线AB的垂线交x轴于点Q,连接OP,设△PQO的面积为S,点P运动时间为t,求S与t的函数关系式,并直接写出t的取值范围;
(3)在(2)的条件下,当P在AB的延长线上,若OQ+AB=


如图,直线
与x轴y轴分别交于A、B两点,直线BC与x轴、y轴分别交于C、B两点,连接BC,且
.

(1)求点A的坐标及直线BC的函数关系式;
(2)若点P在x轴上,平面内是否存在点Q,使点B、C、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
(3)点M在x轴上,连接MB,当
时,求点M的坐标.



(1)求点A的坐标及直线BC的函数关系式;
(2)若点P在x轴上,平面内是否存在点Q,使点B、C、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
(3)点M在x轴上,连接MB,当

如图,在平面直角坐标系中,点A,C分别在x轴、y轴上,四边形ABCO是边长为4的正方形,点D为AB的中点,点P为OB上的一个动点,连接DP,AP,当点P满足DP+AP的值最小时,直线AP的解析式为_____.

如图,平面直角坐标系中,矩形
的对角线
,
.
(1)把矩形
沿直线
对折,使点
落在点
处,折痕
分别与
、
、
相交于点
、
、
,求直线
的解析式;
(2)若点
在直线
上,平面内是否存在点
,使以
、
、
、
为顶点的四边形是菱形?若存在,请直接写出点
的坐标;若不存在,请说明理由.



(1)把矩形












(2)若点









在直角梯形
中,
,
,分别以
边所在直线为
轴,
轴建立平面直角坐标系.
(1)求点
的坐标;
(2)已知
分别为线段
上的点,
,直线
交
轴于点
,过点E作EG⊥x轴于G,且EG:OG=2.求直线
的解析式;
(3)点
是(2)中直线
上的一个动点,在
轴上方的平面内是否存在一点
,使以
为顶点的四边形为菱形?若存在,请求出
点的坐标;若不存在,请说明理由.






(1)求点

(2)已知







(3)点







在平面直角坐标系中,直线y=kx+4(k≠0)交x轴于点A(8,0),交y轴于点B,
(1)k的值是 ;
(2)点C是直线AB上的一个动点,点D和点E分别在x轴和y轴上.
①如图,点E为线段OB的中点,且四边形OCED是平行四边形时,求▱OCED的周长;
②当CE平行于x轴,CD平行于y轴时,连接DE,若△CDE的面积为
,请直接写出点C的坐标.
(1)k的值是 ;
(2)点C是直线AB上的一个动点,点D和点E分别在x轴和y轴上.
①如图,点E为线段OB的中点,且四边形OCED是平行四边形时,求▱OCED的周长;
②当CE平行于x轴,CD平行于y轴时,连接DE,若△CDE的面积为


如图,点P是边长为2cm的正方形ABCD的边上一动点,O是对角线的交点,当点P由A→D→C运动时,设DP=xcm,则△POD的面积y(cm2)随x(cm)变化的关系图象为( )


A.![]() | B.![]() |
C.![]() | D.![]() |
正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b和x轴上,已知点B1(1,1),B2(3,2),则B4的坐标_____,Bn的坐标_____.

如图,平面直角坐标系中,□OABC的顶点A坐标为(6,0),C点坐标为(2,2),若经过点P(1,0)的直线平分□OABC的周长,则该直线的解析式为_______________.
