- 数与式
- 方程与不等式
- 函数
- 平面直角坐标系
- 函数基础知识
- + 一次函数
- 一次函数的图象和性质
- 一次函数与方程、不等式
- 一次函数的实际应用
- 二次函数
- 反比例函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
在一次蜡烛燃烧实验中,蜡烛燃烧时剩余部分的高度y(cm)是燃烧时间x(h)的一次函数.某蜡烛的高度为30cm,燃烧3h后,蜡烛剩余部分的高度为12cm.
(1)求蜡烛燃烧时y(cm)与x(h)之间的函数表达式;
(2)求出蜡烛从点燃到燃尽所用的时间.
(1)求蜡烛燃烧时y(cm)与x(h)之间的函数表达式;
(2)求出蜡烛从点燃到燃尽所用的时间.
如图1,在平面直角坐标系中,直线AB与
轴交于点A,与
轴交于点B,与直线OC:
交于点



A.![]() ![]() (1)若直线AB解析式为 ![]() ①求点C的坐标; ②求△OAC的面积. (2)如图2,作 ![]() ![]() |
如图,在平面直角坐标系
中,一次函数
的图象过点A(4,1)与正比例函数
(
)的图象相交于点B(
,3),与
轴相交于点C.

(1)求一次函数和正比例函数的表达式;
(2)若点D是点C关于
轴的对称点,且过点D的直线DE∥AC交BO于E,求点E的坐标;
(3)在坐标轴上是否存在一点
,使
.若存在请求出点
的坐标,若不存在请说明理由.







(1)求一次函数和正比例函数的表达式;
(2)若点D是点C关于

(3)在坐标轴上是否存在一点



如图,平面直角坐标系中,直线AB:
交y轴于点A(0,1),交x轴于点
(1)求直线AB的解析式和点B的坐标;
(2)求△ABP的面积(用含n的代数式表示);
(3)当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.

A.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n). |
(2)求△ABP的面积(用含n的代数式表示);
(3)当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.

如图,已知函数
的图象与x轴、y轴分别交于点A,B,与函数y=x的图象交于点M,点M的横坐标为2.在x轴上有一点P (a,0)(其中a>2),过点P作x轴的垂线,分别交函数
和y=x的图象于点C,



A. (1)求点A的坐标; (2)若OB=CD,求a的值. |

冬天,小芳给自己家刚刚装满水且显示温度为
的太阳能热水器里的水加热.她每过一段时间去观察一下显示温度,并记录如下:
(1)请直接写出显示温度(
)与加热时间(
)之间的函数关系式;
(2)如果她给热水器设定的最高温度为
,问:要加热多长时间才能达到设定的最高温度?

时间(分钟) | 0 | 5 | 10 | 15 | 20 | …… |
显示温度(![]() | 16 | 17 | 18 | 19 | 20 | …… |
(1)请直接写出显示温度(


(2)如果她给热水器设定的最高温度为

某厂家生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD,线段CD分别表示该产品每千克生产成本y1(单位:元),销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.

(1)请解释图中点D的实际意义.
(2)求线段CD所表示的y2与x之间的函数表达式.
(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?

(1)请解释图中点D的实际意义.
(2)求线段CD所表示的y2与x之间的函数表达式.
(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?
一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图所示,则这次越野跑的全程为 米

如图,直线y=
x+2分别与x轴、y轴相交于点A、点B

(1)求点A和点B的坐标;
(2)若点P是y轴上的一点,设△AOB、△ABP的面积分别为S△AOB与S△ABP,且S△ABP=2S△AOB,求点P的坐标.


(1)求点A和点B的坐标;
(2)若点P是y轴上的一点,设△AOB、△ABP的面积分别为S△AOB与S△ABP,且S△ABP=2S△AOB,求点P的坐标.