- 数与式
- 方程与不等式
- 函数
- 平面直角坐标系
- 函数基础知识
- + 一次函数
- 一次函数的图象和性质
- 一次函数与方程、不等式
- 一次函数的实际应用
- 二次函数
- 反比例函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克瓜到市场上去销售,销售了40kg西瓜之后,余下的每千克降价0.4元,全部售完销售金额与售出西瓜的千克数之间的关系如图所示,小明这次卖瓜赚________元.

如图,菱形ABCD中,AB=2,∠B=120°,点M是AD的中点,点P由点A出发,沿A→B→C→D作匀速运动,到达点D停止,则△APM的面积y与点P经过的路程x之间的函数关系的图象大致是( )


A.![]() | B.![]() | C.![]() | D.![]() |
在关系式
中有下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④用关系式表示的不能用图像表示;⑤y与x的关系还可以用列表法和图像法表示,其中说法正确的是( ).

A.①②⑤ | B.①②④ | C.①③⑤ | D.①④⑤ |
如图,直线
与x轴y轴分别交于A、B两点,直线BC与x轴、y轴分别交于C、B两点,连接BC,且
.

(1)求点A的坐标及直线BC的函数关系式;
(2)若点P在x轴上,平面内是否存在点Q,使点B、C、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
(3)点M在x轴上,连接MB,当
时,求点M的坐标.



(1)求点A的坐标及直线BC的函数关系式;
(2)若点P在x轴上,平面内是否存在点Q,使点B、C、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
(3)点M在x轴上,连接MB,当

已知一次函数y=
x+3的图象与x轴、y轴分别交于A、B两点,以线段AB为直角边在第二象限内左等腰直角三角形ABC,∠BAC=90°,如图1所示.

(1)填空:AB= ,BC= .
(2)将△ABC绕点B逆时针旋转,
①当AC与x轴平行时,则点A的坐标是
②当旋转角为90°时,得到△BDE,如图2所示,求过B、D两点直线的函数关系式.
③在②的条件下,旋转过程中AC扫过的图形的面积是多少?
(3)将△ABC向右平移到△A′B′C′的位置,点C′为直线AB上的一点,请直接写出△ABC扫过的图形的面积.


(1)填空:AB= ,BC= .
(2)将△ABC绕点B逆时针旋转,
①当AC与x轴平行时,则点A的坐标是
②当旋转角为90°时,得到△BDE,如图2所示,求过B、D两点直线的函数关系式.
③在②的条件下,旋转过程中AC扫过的图形的面积是多少?
(3)将△ABC向右平移到△A′B′C′的位置,点C′为直线AB上的一点,请直接写出△ABC扫过的图形的面积.
已知,矩形
中,
,
,
的垂直平分线
分别交
、
于点
、
,垂足为
.
(1)如图,连接
、
.求证四边形
为菱形,并求
的长;
(2)如图,动点
、
分别从
、
两点同时出发,沿
和
各边匀速运动一周.即点
自
→
→
→
停止,点
自
→
→
→
停止.在运动过程中,
①已知点
的速度为每秒5
,点
的速度为每秒4
,运动时间为
秒,当
、
、
、
四点为顶点的四边形是平行四边形时,求
的值.
②若点
、
的运动路程分别为
、
(单位:
,
),已知
、
、
、
四点为顶点的四边形是平行四边形,写出
与
满足的数量关系式.(直接写出答案,不要求证明)










(1)如图,连接




(2)如图,动点
















①已知点










②若点













如图,在平面直角坐标系中,平行四边形OABC的边OC落在x轴的正半轴上,且点B(6,2),C(4,0),直线y=2x+1以每秒1个单位长度的速度沿y轴向下平移,经过______ 秒该直线可将平行四边形OABC分成面积相等的两部分.

如图,在平面直角坐标系中,点A,C分别在x轴、y轴上,四边形ABCO是边长为4的正方形,点D为AB的中点,点P为OB上的一个动点,连接DP,AP,当点P满足DP+AP的值最小时,直线AP的解析式为_____.

在直角梯形
中,
,
,分别以
边所在直线为
轴,
轴建立平面直角坐标系.
(1)求点
的坐标;
(2)已知
分别为线段
上的点,
,直线
交
轴于点
,过点E作EG⊥x轴于G,且EG:OG=2.求直线
的解析式;
(3)点
是(2)中直线
上的一个动点,在
轴上方的平面内是否存在一点
,使以
为顶点的四边形为菱形?若存在,请求出
点的坐标;若不存在,请说明理由.






(1)求点

(2)已知







(3)点






