- 数与式
- 方程与不等式
- 函数
- 平面直角坐标系
- 函数基础知识
- + 一次函数
- 一次函数的图象和性质
- 一次函数与方程、不等式
- 一次函数的实际应用
- 二次函数
- 反比例函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
运城市出租车价格是这样规定的:不超过3千米付车费5元;超过的部分按每千米1.6元收费,已知小颖乘出租车行驶了x(x>3)千米,付车费y元,则所付车费y元与出租车行驶的路程x千米之间的关系式为_____.
已知,等腰三角形的周长为24cm,设腰长为x(cm),底边长为y(cm).
(1)求y关于x的函数表达式;
(2)当腰长为8时,求底边的长;
(3)求x的取值范围.
(1)求y关于x的函数表达式;
(2)当腰长为8时,求底边的长;
(3)求x的取值范围.
某校八年级举行英语词王争霸赛,购买A,B两种笔记本作为奖品.这两种笔记本的单价分别是12元和8元,根据比赛设奖情况需购买这两种笔记本共30本,并且所购买的A 种笔记本的数量多于B种笔记本数量,但又不多于B种笔记本数量的2倍,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.
(1)请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;
(2)若总共花费了320元,则A、B两种笔记本各买了几本?
(1)请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;
(2)若总共花费了320元,则A、B两种笔记本各买了几本?
如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y 轴于点N,再分别以点M、N为圆心,大于
MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2x,y+1),则y关于x的函数关系为________________.


将长为38cm,宽为5cm的长方形白纸按如图所示的方法黏合在一起,黏合部分的白纸宽为2cm.

(1)求5张白纸黏合的长度;
(2)设x张白纸黏合后的总长为ycm,写出y与x的函数关系式.

(1)求5张白纸黏合的长度;
(2)设x张白纸黏合后的总长为ycm,写出y与x的函数关系式.
如图,有一种动画程序,在平面直角坐标系屏幕上,直角三角形是黑色区域(含直角三角形边界),其中A(1,1),B(2,1),C(1,3),用信号枪沿直线y=3x+b发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b的取值范围是( )


A.﹣5≤b≤0 | B.﹣5<b≤﹣3 | C.﹣5≤b≤3 | D.﹣5≤b≤5 |
某班“数学兴趣小组”对函数y=|x|-2的图象特征进行了探究,探究过程如下:
⑴自变量x的取值范围是全体实数,x与y的几组对应值如下:
其中,m= ,n= .
⑵根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象;

⑶观察函数图象,写出一条特征: .
⑴自变量x的取值范围是全体实数,x与y的几组对应值如下:
x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | 1 | m | -1 | -2 | n | 0 | 1 | 2 | … |
其中,m= ,n= .
⑵根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象;

⑶观察函数图象,写出一条特征: .




(1)表示乙离开



甲的速度是 km/h,乙的速度是 km/h.
(2)何时两人在途中相遇?
(3)甲出发后多少时间两人恰好相距10km?

汽车开始行驶时,油箱中有油60升,如果每小时耗油4升,当油箱中的剩油量达到4 升时,会提示加油.那么油箱中的剩余油量y(升) 和工作时间x(时)之间的函数关系式是______
某厂计划生产A、B两种产品共50件,已知A产品每件可获利润700元,B产品每件可获利润1200元,设生产两种产品的获利总额为y(元),写出y与生产A产品的件数x之间的函数表达式__________________.