- 数与式
- 方程与不等式
- 函数
- 平面直角坐标系
- 函数基础知识
- + 一次函数
- 一次函数的图象和性质
- 一次函数与方程、不等式
- 一次函数的实际应用
- 二次函数
- 反比例函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中折线表示y与x之间的函数关系,根据图象进行以下探究:
信息获取:
(1)甲、乙两地之间的距离为 km
(2)请解释图中点B的实际意义;图象理解: .
(3)求慢车和快车的速度;
(4)求出C点的坐标.
(第(3)、(4)问要求写出求解过程).
信息获取:
(1)甲、乙两地之间的距离为 km
(2)请解释图中点B的实际意义;图象理解: .
(3)求慢车和快车的速度;
(4)求出C点的坐标.
(第(3)、(4)问要求写出求解过程).

周末,小明和哥哥一起骑自行车从家里出发到昌南湖游玩,从家出发0.5小时后到达陶溪川,游玩一段时间后按原速前往昌南湖.小明离家80分钟后,爸爸驾车沿相同路线前往昌南湖,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象,已知爸爸驾车的速度是小明骑车速度的3倍.
(1)小明骑车的速度为_____km/h,爸爸驾车的速度为_____km/h.
(2)小明从家到陶溪川的路程y与时间x的函数关系式为_____,他从陶溪川到昌南湖的路程y与时间x的函数关系式为______,爸爸从家到昌南湖的路程,与时间x的函数关系式为______.
(3)小明从家出发多少小时后被爸爸追上?此时离家多远?
(4)如果小明比爸爸晚10分钟到达昌南湖,那么昌南湖离家有多远?
(1)小明骑车的速度为_____km/h,爸爸驾车的速度为_____km/h.
(2)小明从家到陶溪川的路程y与时间x的函数关系式为_____,他从陶溪川到昌南湖的路程y与时间x的函数关系式为______,爸爸从家到昌南湖的路程,与时间x的函数关系式为______.
(3)小明从家出发多少小时后被爸爸追上?此时离家多远?
(4)如果小明比爸爸晚10分钟到达昌南湖,那么昌南湖离家有多远?

如图,已知直线y=2x+b交x轴于点A(﹣2,0),交y轴于点B,直线y=2交AB于点C,交y轴于点D,P是直线y=2上一动点,设P(m,2).
(1)求直线AB的解析式和点B,点C的坐标;
(2)直接写出m为何值时,△ABP是等腰三角形;
(3)求△ABP的面积(用含m的代数式表示).
(1)求直线AB的解析式和点B,点C的坐标;
(2)直接写出m为何值时,△ABP是等腰三角形;
(3)求△ABP的面积(用含m的代数式表示).

如图,甲、乙两人以相同路线前往距离单位10km的培训中心参加学习,图中1,
分别表示甲、乙两人前往目的地所走的路程S(千米)随时间(分)变化的函数图象,以下说法:①甲比乙提前12分钟到达;②甲的平均速度为15千米/小时;③甲、乙相遇时,乙走了6千米;④乙出发6分钟后追上甲,其中正确的是( )



A.①② | B.③④ | C.①③④ | D.②③④ |
如图所示,四边形OABC是矩形,点D在OC边上,以AD为折痕,将△OAD向上翻折,点O恰好落在BC边上的点E处,若△ECD的周长为2,△EBA的周长为6.
(1)矩形OABC的周长为 ;
(2)若A点坐标为
,求线段AE所在直线的解析式.
(1)矩形OABC的周长为 ;
(2)若A点坐标为


在世界经济的影响下,国家采取扩大内需的政策,基建投资成为拉动内需最强有力的引擎,金强公司中标一项工程,在甲、乙两地施工,其中甲地需推土机30台,乙地需推土机26台,公司在A、B两地分别库存推土机32台和24台,现从A地运一台到甲、乙两地的费用分别是400元和300元.从B地运一台到甲、乙两地的费用分别为200元和500元,设从A地运往甲地x台推土机,运这批推土机的总费用为y元.
(1)根据题意,可将库存地和施工地之间推土机的运输数量列表如下:
(2)求y与x的函数关系式;
(3)当x取何值时,能使运送这批推土机的总费用最少?
(1)根据题意,可将库存地和施工地之间推土机的运输数量列表如下:
| 甲地(台) | 乙地(台) | 合计 |
A地 | x | | A地库存:32 (台) |
B地 | | | B地库存:24 (台) |
合计 | 甲地需求:30 (台) | 乙地需求:26 (台) | 总计:56 (台) |
(2)求y与x的函数关系式;
(3)当x取何值时,能使运送这批推土机的总费用最少?
这是一道我们曾经探究过的问题:如图1.等腰直角三角形
中,
,
.直线
经过点
,过
作
于点
,过
作
于点
.易证得
≌
.(无需证明),我们将这个模型称为“一线三等角”或者叫“K形图”.接下来,我们就利用这个模型来解决一些问题:
(模型应用)
(1)如图2.已知直线l1:
与与坐标轴交于点A、B.以AB为直角边作等腰直角三角形ABC,若存在,请求出C的坐标;不存在,若说明理由.

(2)如图3已知直线l1:
与坐标轴交于点A、B.将直线l1绕点A逆时针旋转45°至直线l2.直线l2在x轴上方的图像上是否存在一点Q,使得△QAB是以QA为底的等腰直角三角形?若存在,请求出直线BQ的函数关系式;若不存在,说明理由.
(拓展延伸)
(3)直线AB:
与
轴负半轴、
轴正半轴分别交于A、B两点.分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图4,△EPB的面积是否确定?若确定,请求出具体的值;若不确定,请说明理由.













(模型应用)
(1)如图2.已知直线l1:


(2)如图3已知直线l1:

(拓展延伸)
(3)直线AB:



弹簧挂重物会伸长,测得弹簧长度y(cm)最长为20cm,与所挂物体重量x(kg)间有下面的关系.

下列说法不正确的是( )

下列说法不正确的是( )
A.x与y都是变量,x是自变量,y是因变量 |
B.所挂物体为6kg,弹簧长度为11cm |
C.物体每增加1kg,弹簧长度就增加0.5cm |
D.挂30kg物体时一定比原长增加15cm |
如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.

(1)求k、b的值;
(2)请直接写出不等式kx+b>3x中x的范围.
(3)若点D在y轴上,且满足S△BCD=2S△BOC,求点D的坐标.

(1)求k、b的值;
(2)请直接写出不等式kx+b>3x中x的范围.
(3)若点D在y轴上,且满足S△BCD=2S△BOC,求点D的坐标.