- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- + 数学归纳法
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某个命题与正整数有关,若当
时该命题成立,那么可推得当
时该命题也成立,现已知当
时该命题不成立,那么可推得( )




A.当![]() | B.当![]() |
C.当![]() | D.当![]() |
用数学归纳法证明对
为正偶数时某命题成立,若已假设
为偶数)时命题为真,则还需要用归纳假设再证 ( )


A.![]() | B.![]() |
C.![]() | D.![]() |