- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- + 综合法
- 综合法的概念及辨析
- 综合法证明
- 分析法
- 反证法
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
以下是解决数学问题的思维过程的流程图:

在此流程图中,①、②两条流程线与“推理与证明”中的思维方法匹配正确的是( )

在此流程图中,①、②两条流程线与“推理与证明”中的思维方法匹配正确的是( )
A.①—分析法,②—反证法 | B.①—分析法,②—综合法 |
C.①—综合法,②—反证法 | D.①—综合法,②—分析法 |
(1)(用综合法证明)
已知△ABC的内角A、B、C所对的边分别为a,b,c,且A、B、C成等差数列,a,b,c成等比数列,证明:△ABC为等边三角形。
(2)(用分析法证明)
设a,b,c为一个三角形的三边,s=
(a+b+c),且s2=2ab,试证:s<2a.
已知△ABC的内角A、B、C所对的边分别为a,b,c,且A、B、C成等差数列,a,b,c成等比数列,证明:△ABC为等边三角形。
(2)(用分析法证明)
设a,b,c为一个三角形的三边,s=
