- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- + 归纳推理
- 归纳推理概念辨析
- 数与式中的归纳推理
- 图与形中的归纳推理
- 类比推理
- 演绎推理
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图(1)中的1,3,6,10,…,由于这些数能够表示成三角形,所以将其称为三角形数;类似地,称图(2)中的1,4,9,16,…这样的数为正方形数,则下列数中既是三角形数又是正方形数的是( )




A.![]() | B.![]() |
C.![]() | D.![]() |
我国古代数学家著作《九章算术》有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一.并五关所税,适重一斤,问本持金几何”其意思为“今有人持金出五关,第1关收税金
,第2关收税金为剩余金的
,第3关收税金为剩余税金的
,第4关收税金为剩余金的
,第5关收税金为剩余金的
.5关所收税金之和,恰好重1斤,问原本持金多少?”若将题中“5关所收税金之和,恰好重1斤,问原本持金多少?”改成“假设这个人原本持金为
,按此规律通过第8关”,则第8关需收税金为__________
.







将正偶数按下表排列成
列,每行有
个偶数的蛇形数列(规律如表中所示),则数字
所在的行数与列数分别是_______________.



| 第![]() | 第![]() | 第![]() | 第![]() | 第![]() |
第![]() | | ![]() | ![]() | ![]() | ![]() |
第![]() | ![]() | ![]() | ![]() | ![]() | |
第![]() | | ![]() | ![]() | ![]() | ![]() |
第![]() | ![]() | ![]() | ![]() | ![]() | |
… | … | | | | |
分形几何学是美籍法国数学家伯努瓦.B.曼德尔布罗特在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路,下图是按照一定的分形规律生长成一个数形图,则第13行的实心圆点的个数是________

我国古代数学名著《九章算术》记载:“勾股各自乘,并之,为弦实”,用符号表示为a2+b2=c2(a,b,c∈N*),把a,b,c叫做勾股数.下列给出几组勾股数:3,4,5;5,12,13;7,24,25;9,40,41,以此类推,可猜测第5组勾股数的第二个数是________.
绝对值|x﹣1|的几何意义是数轴上的点x与点1之间的距离,那么对于实数a,b,
的几何意义即为点x与点a、点b的距离之和.
(1)直接写出
与
的最小值,并写出取到最小值时x满足的条件;
(2)设a1≤a2≤…≤an是给定的n个实数,记S=
.试猜想:若n为奇数,则当x∈ 时S取到最小值;若n为偶数,则当x∈ 时,S取到最小值;(直接写出结果即可)
(3)求
的最小值.

(1)直接写出


(2)设a1≤a2≤…≤an是给定的n个实数,记S=

(3)求

埃及数学中有一个独特现象:除
用一个单独的符号表示以外,其他分数都要写成若干个单分数和的形式,例如
可以这样理解:假定有两个面包,要平均分给5个人,如果每人
不够,每人
,余
,再将这
分成5份,每人得
,这样每人分得
,形如
的分数的分解:
,
,
,按此规律,
_____.













