- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- + 合情推理与演绎推理
- 归纳推理
- 类比推理
- 演绎推理
- 直接证明与间接证明
- 数学归纳法
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某运动队从
四位运动员中选拔一人参加某项赛事,在选拔结果公布前,甲、乙、丙、丁四位教练对这四位运动员预测如下:甲说:“是
或
被选中”; 乙说:“是
被选中”;丙说:“
,
均未被选中”; 丁说:“是
被选中”.若这四位教练中只有两位说的话是对的,则获得参赛资格的运动员是____.







中国有个名句“运筹帷幄之中,决胜千里之外.”其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如下表

表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推, 例如6613用算筹表示就是:
,则26337用算筹可表示为( )

表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推, 例如6613用算筹表示就是:

A.![]() | B.![]() |
C.![]() | D.![]() |
某参观团根据下列约束条件从
,
,
,
,
五个镇选择参观地点:
①若去
镇,也必须去
镇; ②
,
两镇至少去一镇;
③
,
两镇只去一镇; ④
,
两镇都去或都不去;
⑤若去
镇,则
,
两镇也必须去.
则该参观团至多去了( )





①若去




③




⑤若去



则该参观团至多去了( )
A.![]() ![]() | B.![]() ![]() | C.![]() ![]() | D.![]() ![]() |
语文中回文句,如:“黄山落叶松叶落山黄,西湖垂柳丝柳垂湖西.”,倒过来读完全一样,数学中也有类似现象,无论从左往右读,还是从右往左读,都是同一个数,称这样的数为“回文数”!二位的回文数有11,22,33,44,55,66,77,88,99,共9个;三位的回文数有101,111,121,131,…,969,979,989,999,共90个;四位的回文数有1001,1111,1221,…,9669,9779,9889,999,共90个;五位的回文数有10001,11111,12221,…,96669,97779,98889,99999共900个,由此推测:10位的回文数总共有_______个.
我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”它体现了一种无限与有限的转化过程比如在表达式
中“
”即代表无限次重复,但原式却是个定值,它可以通过方程
求得
,类似上述过程,则
( )





A.![]() | B.![]() | C.![]() | D.![]() |
把自然数按如图所示排列起来,从上往下依次为第一行、第二行、第三行…,中间用虚线围起来的一列数,从上往下依次为
,按这样的顺序,排在第
个的数是__________.


